UPS Technology

JEEE IAS Atlanta Georgia September 19, 2016

Maurice Allen Critical Power Specialist Levine Lectronics and Lectric

- UPS History
- Current Designs
- Current Market Drivers
- Technology Trends
- Application Trends

A Brief History of Uninterruptible Power Supplies

First UPS Systems

- ~1950s Double conversion MG set
- Motor (DC or Synchronous AC)
- Flywheel
- Generator

Electrical Energy converted to Mechanical Energy then back to Electrical Energy

- Inefficient
- Reliable
- Simple
- Limited Ride through times
- Still available today (process industry, frequency converters)

First Static UPS Systems

~1960s Static UPS

- SCR based
- Six Step SCR Inverters
- Isolation Transformers

- Low Switching frequency
- Wave form filtering
- Transformers

First Commercial Three Phase Static UPS

ALL STATIC UNINTERRUPTIBLE POWER SYSTEMS

THIS BULLETIN COVERS

- Complete UPS (Uninterruptible Power Systems) including batteries and battery charger.
- Standard static inverter specifications and optional features.
- Application information.

WHERE TO USE

For military, industrial, utility and other applications including:

- data processing computers
- process control computers
- electronic process instrumentation
- critical communication complexes
- critical process machinery
- emergency lighting
- microwave and crypto equipment
- frequency conversion

FEATURES

- Precise uninterruptible power.
- Super-reliable--field proven with 30,000 KVA of inverters operating today. Conservative design and best quality components.
- Low maintenance--no moving parts, no aging.
- . Each Installation modules destant as a stat

Figure 1. Typical Rectifier and Inverter Line-up, 185 KVA Output

Traditional North American UPS System

Transformer based with circuit breakers

Current Designs

Line Interactive

Double Conversion

Rotary

Parallel UPS with Central Bypass

INTERGRATED SYSTEM CONTROL CABINET

"Change is like heaven. Everybody wants to go there, but nobody wants to die."

Carly Fiorina Former Chairman and CEO Hewlett Packard

Current Market Drivers

Technology Advances

- Controls Analog to digital
- Switching Breakers to Contactors

Power Electronics – SCR to IGBT

"No one will remember how much you saved on the utility bill <u>if</u> you drop the load"

-unknown (it might have been me)

Reliability is still the number one design criteria, but efficiency is starting to move up the list. Efforts by The Green Grid, Green Data Center, and EPA are putting a spotlight on data center efficiency. EPA has expanded the Energy Star program to included Data Centers, Servers, Storage, and **UPS modules**.

Data Center Energy Efficiency

Data Center Energy Efficiency Regulations?

PUE being adopted as a standard globally

Example:

- Amsterdam requires a PUE of 1.3 or less on new data centers
- Currently operational datacenters are required to have a PUE of 1.4 or less, within 5 years.

Amsterdam Regulation – Program to reduce carbon emissions by 40% by 2025 compared to 1990 levels. In 2008 datacenters accounted for 6% of total CO2 emissions of the city.

Data Center UPS Operating Costs

High efficiency up to 96.5%

Considerable life cycle cost savings
 Reduction in UPS operating cost
 Reduction in cooling cost

Assumptions:

- \checkmark Power cost = \$ 0.10 /kw-hr
- ✓ Operating hours/year = 8760
- \checkmark Cooling factor = 0.35

✓ Configuration = 500 kW UPS @ 50% load

96.5% efficent UPS annual savings
Compared to
92% efficiency UPS > \$ 14,980
94% efficiency UPS > \$ 8,140
95% efficiency UPS > \$ 4,830

Data Center Mission

Cloud Computing

- Redundancy in the software in lieu of physical infrastructure
- Smaller "Zones of Reliability"
- Less infrastructure? No generators limited UPS

Data Center Mission

HPC Computing

- N+N UPS on Storage
- N UPS or No UPS on Processing

Internet or Social Media

- UPS at the rack or row
- Energy Storage integral to Power Supply

Data Center Economics – Obsoleting Designs

Customers vote for product designs via **Purchase Orders**

- Features that customers are not willing to pay for will go away
- Examples:
 - Centralized Bypass
 - Higher cost than distributed bypass
 - Larger footprint
 - Transformer Based UPS
 - Higher cost (not necessarily price)
 - Larger footprint
 - Lower efficiency

Technology Trends

Distributed Bypass

Centralized Bypass

Distributed Bypass – Cable Lengths

rating & cable section

SCR Rectifiers

6 Pulse & 12 Pulse

SCR Rectifiers

- Harmonic issues
- Capacitive Filters
- Low switching frequency
- Low input power factor

3-Level IGBT Topology

Reduced switching and filter losses improves efficiency

3-Level IGBT Inverter and Rectifier

Three level technology with an Advanced Neutral Point Clamped topology implemented with true Reverse Blocking IGBT.

Reduced switching and filter losses compared to std. two level technology

Transformer based UPS

- Galvanic isolation (+)
- Large Footprint (-)
- Poor Efficiency <92% (-)
- Higher Mfg Cost (-)

Transformer-less UPS

- High Efficiency(+)
- Low Harmonics (+)
- High Input PF (+)
- Bus Optimization (+)
- Small Footprint (+)
- Less Weight (+)
- Battery Monitoring (?)
- Three Wire Input (?)
- Lower Mfg Cost (+)

Transformer Based /UPS 4 wire input

- UPS not separately derived system
- Phase to neutral loads allowed downstream of UPS
- Stored Energy
- Any open transition 4 pole switching (breaker or ATS) upstream of UPS will result in loss of N-G reference at UPS output during switching. (see appendix for more details)

Transformer Based /UPS 3 wire input

Transformer-less UPS 4 wire input (Modules with 4 Wire Inverter Output)

Grounding and application identical to transformer based UPS

Transformer-less UPS 3 wire input (Modules with 4 Wire Inverter Output)

Grounding and application identical to transformer based UPS

Transformer-less UPS 3 wire input (Modules with 3 Wire Inverter Output)

Significant Grounding and Application Issues

Eco-mode

Double conversion mode provides the best protection, more protection than is required by the IT equipment, but at the highest operating cost

Adoption is increasing, especially in N+N configurations where one side is VFI and the other is ecomode

UPS Performance

Ecomode Operation & Impact

Inductor and output filter capacitors provide filtering in eBoost

The Green Grid Data Center Maturity Model

Power		Level 0 Minimal/No Progress	Level 1 Part Best Practice	Level 2 Best Practice	Level 3	Level 4	Level 5 Visionary - 5 Years Away
1.2	Architecture	use • Greater redundancy than required • Numerous isolation	 business type Fewer and higher efficiency transformers (NEMA TP1 or equivalent) Verify the product's efficiency 	backup) technologies based on TCO, Materials &		• Move to higher IT load voltage, either AC or DC	

Modular

What are the benefits

- Scalable
 - Delay CAPEX cost
- Internal Redundancy
 - Higher Reliability ?
- Hot swappable
 - Low Power 208V
 - High Power 480V
 - Arc Flash
 - Human Error
- Lower MTTR

Where do these features make sense?

		Monolithic	\leftarrow				\rightarrow	Modular
		0	1	2	3	4	5	6
	Common breakers	Х	Х	Х	Х	Х	Х	Х
	Common Battery	Х	Х	Х	Х	Х	Х	х
	Common Contactors	Х	Х	Х	Х	n/a	n/a	n/a
	Power Block Construction		Х	Х	Х	Х	Х	х
	Bolted Power Blocks		Х	Х	Х	Х	n/a	n/a
	Field upgrade			Х	Х	Х	Х	х
	Distributed Batteries				Х	Х	Х	x
	Cold Swap - no FSE?							
	Contactors per PB					Х	Х	х
	N+1 Block Failover					Х	Х	Х
	Plug-in Power Blocks						Х	Х
	Hot swappable Blocks							Х
Increased Cost	Redundant Static Switches							х
l	Redundant Controls Per PB							Х

Application Trends

Elevated Temperatures

- UPS rated 104⁰ F
- Batteries rated 68-77⁰ F
- Air Conditioned Battery Cabinets ?

Energy Storage

- 1. Flywheel Energy Storage
- 2. Lithium Batteries
- 3. Sodium Batteries
- 4. Super Capacitors
- 5. Pure Lead Batteries

Alternative Topologies

- Reduce CAPEX costs
- Reduce stranded assets
- Improve efficiency
- Improve capability to handle "Dynamic Loads"?
- Pressure on Data Centers to be "Competitive"

Changes in Reliability Metrics?

Data Center Tier *	Tier I	Tier II	Tier III	Tier IV
System Component Redundancy	Ν	N+1	N+1 or S+S	Minimum of N+1
Distribution Paths	1	1	1 Normal 1 alternate	2 Active
Concurrently Maintainable	No	No	Yes	Yes
Fault Tolerant	No	No	No	Yes
Staffing	None	1 Shift	1+ Shifts	24 x Forever
Single Points of Failure	Many + human error	Many + human error	Some + human error	None + fire + EPO
Annual IT Downtime	28.8 hours	22.0 hours	1.6 hours	0.8 hours
Site Availability	99.67%	99.75%	99.98%	99.99%

- Uptime Tier System
 - De-facto Metric
 - Relates Topology Characteristics to Reliability
 - Simple
- IEEE P3006.7 Recommended Practice for Determining the Reliability of "7 x 24" Continuous Power Systems in Industrial and Commercial Facilities
- M Technology introducing a new approach at 7X24 June 2015 conference

Traditional Topologies – N+1

Traditional Topologies – N+N

Alternative Topologies – Catcher Systems

Traditional Topologies – 4N/3

Alternative Topologies – Isolated Parallel

Alternative Topologies – Isolated Parallel

480V & 400V Power Chain

400V

Advantages:

- Improves server power supply efficiency (from 90% to 92%)
- 2. Eliminated PDU losses
- 3. EPA includes multi-mode operation in the Energy Star for UPS standard
- Potential Design Issues:
- 1) Higher Short Circuit currents Higher Arc Flash
- 2) Selective Coordination
- 3) Neutral requirements 4W design and possible Ground Fault Issues

National Electric Code requires ground fault protection

- Data Centers have redundant circuit paths to improve reliability
- Redundant neutral paths comprise traditional ground fault protection.
- Most data centers are 3 wire to avoid these issues

Only solutions are:

- 1) Modified differential ground fault protection
- 2) Four pole breakers to break neutral path Four pole breakers simplify the process, but does not eliminate the issue (closed transition transfers are still an issue)

MV UPS

Lower Cost driving MV designs

- •Less Copper Less PVC conduit
- Less Labor
- •Shorter construction cycle
- •Equipment costs about the same.
- •Overall, total cost is lower (estimate 10-15% on installed cost)

Possible Future Trends

DC UPS

High Performance Semi-conductors

Silicon-carbide IGBT

- Extremely efficient
- Currently <u>very</u> expensive

What premium for 99% efficiency in VFI (double conversion) mode

Questions?