"The New Generation of Medium Voltage Switchgear"

Your Presenter

Joe Richard is the US Launch Manager for > Schneider Electric's Premset Switchgear. Joe graduated from the Georgia Institute of Technology with a BS degree in Electrical Engineering in 2007, and has been with Schneider Electric since 2008. He has worked in a variety of roles including Sales, Marketing, and Business Development. Joe's main focus has been Medium Voltage Distribution Switchgear and its applications. His professional interests include Power Distribution, Energy Efficiency, Power Protection and Automation, Energy Storage, and Renewable Energy.

Learning Objectives

- 1. Describe what is Shielded Solid Insulation
- 2. List the differences between current and new switchgear designs
- 3. List the benefits of the new generation of medium voltage switchgear and how it addresses current market needs
- 4. Describe how to design with new switchgear technology, and application considerations

AIS Modular **Switchgear** Withdrawable SF6 or Vacuum Withdrawable oil Masonry cells æ Vacuum Draw-out Circuit **Breaker** SF6 Draw-out Solid Insulated **Switchgear** Oil Draw-out Oil Fixed 1930 1950 1970 1990 2010 2020

Confidential Property of Schneider Electric | Page 4

History of MV Switchgear

Design Innovations

- Insulation Systems
- Circuit Breaker
- Grounding Switch
- Maintenance Requirements
- Small Footprint/Front Accessibility
- Asset Monitoring

Application Issues

- Reliability
- Safety
- Maintenance
- Total Cost of Ownership

Insulation System

Insulation Deteriorates Over Time

- Humidity
- Dust
- Chemicals
- Temperature

Corona

- Ozone and audible sounds
- Equipotential lines and sharps

Improvements from Component Design

- Shaping and grounded shielding
- Computer analysis plus lab verification
- Analytical processes to manage reliability

Standard Application

IEEE Std C37.20.3-2013

Insulating materials used for the isolation or support of the primary conductors shall be tested for flame resistance and tracking resistance in accordance with the requirements of **IEEE Std C37.20.3**.

6.2.7.1 Flame-resistance tests

Sheet, molded, or cast primary insulating materials used in switchgear assemblies shall have a minimum average ignition time of 60 s and a maximum average burning time of 500 s when tested in accordance with method II in ASTM D229-96.

UL Listing

UL 94, the Standard for Safety of Flammability of Plastic Materials for Parts in Devices and Appliances testing Insulating

Temperature and Lifespan Testing

Lifespan Testing Based on Continuous Temperature Testing

4. Service conditions

Standards for the design and perform described in this claunsulatinger ERDM (struction and ratings as defined in this st

a) The tem **30+ Year Lifespan with Minimal Tracking or Degradation**

Solid insulation covered by a conductive layer

Shielded Solid Insulation Switchgear

Solid Insulated Switchgear

Entire Live Current Path is Fully Epoxy Resin Insulated
No Exposed Live Parts
Protected from Environmental Exposure

Compact Medium Voltage SwitchgearReduced Footprint

 \circ Modular Design

Shielded Solid Insulation Switchgear

All surfaces at ground potential

- No dielectric ageing
- Long product life expectancy
- Reduced internal arc risk
- Accidentally touchable
- Insensitive to harsh environment

Circuit Breakers

Mounting

Metal Clad Switchgear

C37.20.2

Metal Enclosed Switchgear

C37.20.3

Withdrawable

Easy to maintain both circuit breaker and withdrawing mechanism

Removable

Circuit breaker removal without withdrawing mechanism

Fixed

Circuit breaker lifetime maintenance free

Circuit Breaker

Environmental Robustness

Moisture and Humidity

Dust and Chemicals

Insects and Vermin

Factory Sealed Enclosures

Enclosed Core Unit

Vacuum Circuit Breaker

Isolation Switch

Grounding Switch

Sealed at Factory

Completely Epoxy Insulated

Grounding Switches

Manual Grounding

Maintenance Safety

Integral Grounding

Grounding Switch Applications

Maintenance Safety

Internal Grounding Switch

Hardware Design

- Ideally, 10 years hands off
- Vibration Resistant Hardware
- Interlocking Cubicles
- Pre-formed Bussing
- No Withdrawable Mechanism
 - Bus Fingers
 - Mechanism

Installation

Verification

Maintenance Intervals

Maintenance

Maintenance Cost Comparison

■ Yearly ■ 3 Years ■ 10 Years

Small Form Factor

Small Footprint and Front Accessibility

Small Footprint Design

Asset Monitoring

Advancement

Infrared Scanning

Corona Detection

Temperature History

Thermal Monitoring

Partial Discharge Monitoring Environmental Monitoring

Environmental Impact – Core Materials

SIS

AIS

Metalclad

Product weight	148.3	326.0	923.0
Steel	73.0	154.0	732.4
Copper	9.0	45.0	95.2
Aluminium	10.0	10.0	10.6
Epoxy Resin	34.0	52.0	60.1
Autres	22.3	65.0	24.7

Environmental Impact - CO2 Contribution

Global Warming (g ~CO2) M+D+U, 20 years, 30%In

Design Considers

- 1. Footprint Layout Front/Rear Accessibility
 - I. Top or Bottom Cable Entry Cabling Space
- 2. Protection and Controls
 - I. LV Mounting Space
 - II. Sensor vs. Standard Instrument Transformers
 - III. Combined Relaying and Metering
 - IV. Remote Operation and Controls
- 3. Safety
 - I. Maintenance Procedures and Requirements
 - II. Safety Interlocking
 - III. Reducing Arc Flash Risk

- 4. Electrical Requirements
 - I. Voltage, Current, and Interrupting Ratings
- 5. Environment Application
 - I. Heat and Humidity
 - II. Chemical Contaminants
 - III. Rodents, Vermin, and Insects
- 6. Equipment Coupling
- 7. Reliability
- 8. Cost
 - I. Cap Ex
 - II. Op Ex

