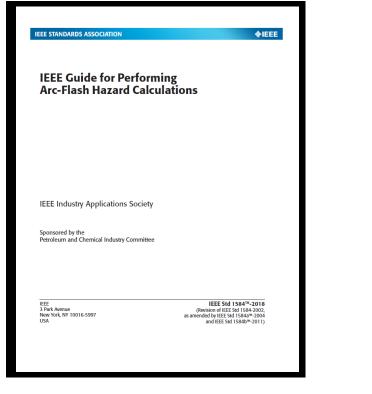
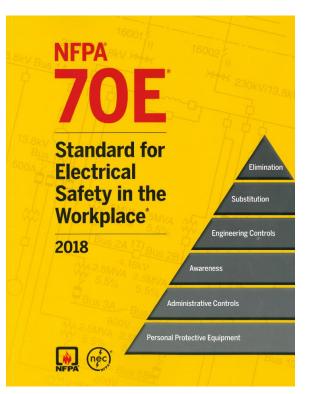
The New IEEE-1584 Guide for Performing Arc-Flash Calculations

David Rewitzer 10/21/2019


IEEE 1584

Agenda


- Standard differences
- Brief history
- Definitions
- Significant differences
- General guide line
- Where arc flash and electrical safety is heading

The Standards

What's the difference?

Guide for Performing Arc Flash Hazard Calculations

NFPA 70E 2018

Governs Employee Workplace Safety IEEE 1584-2018

Evolution of Incident Energy prescribed in Annex D of NFPA-70E

- D2. Lee Calculation Method (1981) • Arc as a point
- D.3 Doughy Neal Paper (2000)
 D.3.2 Arc In open Air
 D.3.3 Arc in a cubic box

• D.4 1584-2002 Calculation Method (2002)

Voltages	Bolted Fault Currents	Approximate Number of Tests
13.8 kV	5.4-40.4 kA	18
4.16kV	5.4-40.4kA	18
2.3kV	2.6-16.6kA	42
<1.0 kV	0.7-106kA	230

• 75k plus help from the Navy

IEEE 1584-2018

Evolution of Incident Energy

Voltage	~ Number of tests
208V (3ph) 240V (1ph)	195
480V	400
600V	340
2700V	320
4160V	180
14.3kV	270

~3.5million donated for these tests

IEEE 1584-2018 Highlights

Key Changes

• New arcing fault (I_{arc}) equations

- New incident energy (IE) equations
- Electrode Configuration-Very Significant!
- Enclosure size factor (CF)
- New guidance for equipment =<240V

IEEE 1584-2018 Highlights

Definitions

• **Arc:** Plasma cloud formed in a gap between two electrodes with sufficient potential difference

- Arc flash: An electric arc event with thermal energy dissipated as radiant, convective, and conductive heat.
- Fault current: A current that flows from one conductor to ground or to another conductor due to an abnormal connection between two conductors.
- **Bolted fault:** A short-circuit condition that assumes zero impedance exists at the point of the fault.
- Arcing fault current (Arc current): A fault current flowing through an electric arc plasma. General rule of thumb AF=50% of BF @480V
- Incident Energy (IE in cal/cm²): the amount of thermal energy impress on a surface, a certain distance from the source, generated during an electric arc event.

Incident Energy (IE) based at defined distance

IEEE 1584-2018 Highlights

Definitions

		WA	RNING
Distance for 2 nd degree burn	Arc Flash Hazard Boundary	5ft 5 in	Shock Hazard PE Required Incident Energy in cal/cm^2
Based on PNL Voltage at Equipment Glove Class based on Voltage Shock Hazard Voltage Based Distances	Working Distance Shock Hazard Exposure Glove Class Limited Approach Restricted Approach	1 ft 6 in 480 VAC 00 3 ft 6 in 1 ft	9.8 ← PPE Requirements Arc-rated shirt & pants + arc-rated coverall + arc-rated arc flash suit
Equipment of interest	Equipment ID: ATS-CH	11	Date: 10/03/14 850 Center Way Norcross, Georgia 30071

* I.E. = Incident Energy Article 100-Definitions

1.2 cal/cm² = second degree burn

IEEE 1584-2002 The 9 step program

Source: IEEE-1584-2002

- Step1:Collect system and installation data
- Step2: Determine the system modes of operation
- Step3:Determine bolted fault currents
- Step4: Determine arcing fault currents
- Step5: Find protective device characteristics and duration of arcs
- Step6: Document system voltages and classes of equipment
- Step7: Select working distances
- Step8:Determine Incident Energy(IE) for all equipment
- Step9: Determine Flash-protection boundary for all equipment

IEEE 1584-2018 The 10 step program

Source: IEEE-1584-2018

- 1. Collect system and installation data
- 2. Determine the system modes of operation
- 3. Determine bolted fault currents
- 4. Determine typical gap and enclosure size based on system voltages and classes of equipment
- 5. Determine equipment electrode configuration (HCB, VOA, etc.)
- 6. Determine working distances
- 7. Calculate arcing current
- 8. Calculate arc duration (through OCPD)
- 9. Calculate Incident energy (IE)
- 10. Determine arc flash boundary for all equipment
- Note: Black=new for study engineer, Red=new for software

IEEE 1584-2018 Highlights Electrode configuration

Now Includes Five Vertical *and* Horizontal Configurations

• VCB

• Vertical Conductors in a Box (IEEE 2002)

• VCBB

 Vertical Conductors in a Box with an insulating Barrier

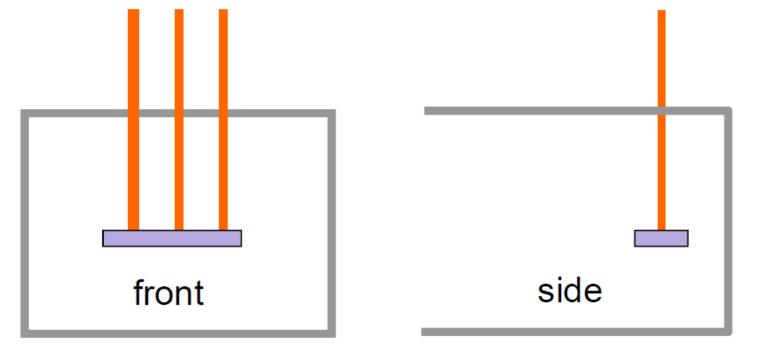
• HCB

Horizontal Conductors in a Box

• VOA

• Vertical Conductors in Open Air (IEEE 2002)

• HOA


Horizontal Conductors in Open Air

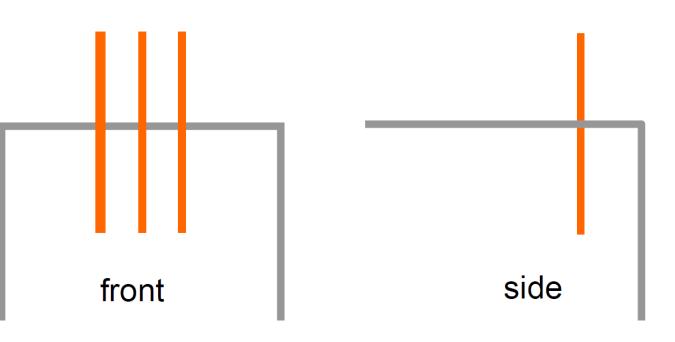
VCB Vertical Conductors in a Box (IEEE-2002)

Source: PCIC-2019 Tutorial 1&7

VCBB Vertical Conductors in a Box with a Barrier

Key Findings

VCBB


- For LV IE up to 2x that of VCB
- Arcing current (I_{arc}) reported to be higher than VCB
- 208V arcs sustained down to 4kA
 - According to testing electrode shape and gap are important at this level


HCB Horizontal Conductors in a Box

• • •		
front	side	

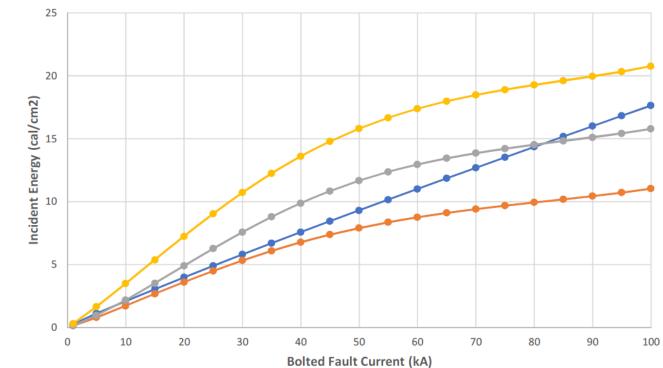
VOA Horizontal Conductors in a Open Air

HOA Horizontal Conductors in a Open Air


• • •	
front	side

Arcing fault vs Bolted fault

LV System 100ms clearing time

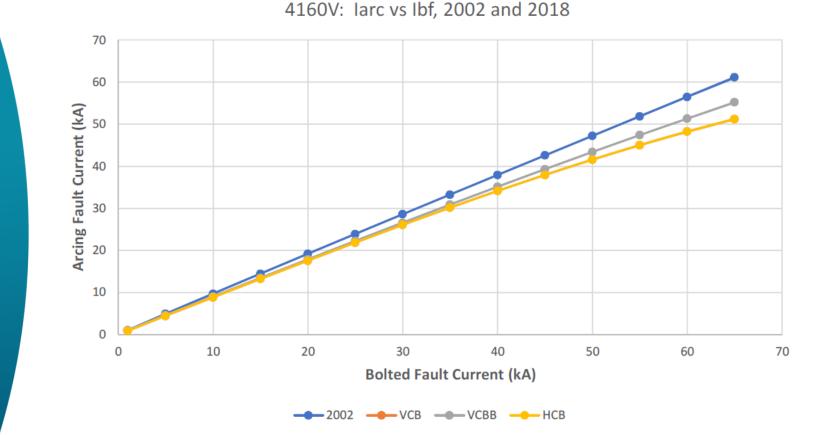


The maximum arcing fault spread is 25-40% higher

Incident Energy VS **Bolted Fault**

480V system

Clearing time-100ms

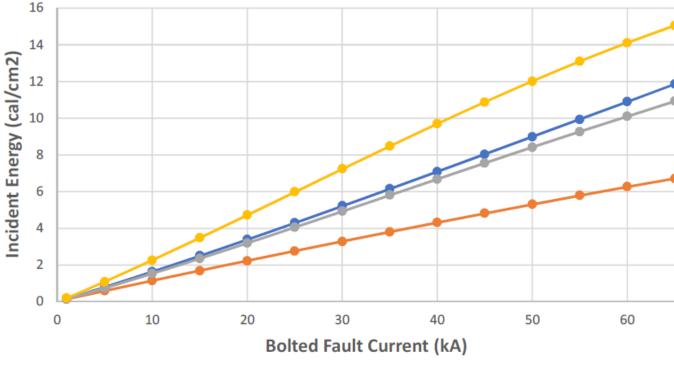

Incident Energy vs Bolted Fault

Box vs Open Air

Arc Fault vs Bolted Fault

MV System

New Model considers the effect of arc impedance at high fault current levels


Incident Energy VS **Bolted Fault**

4160-SWGR Clearing time-100ms

4160V IE Comparison

More linear than LV, but bigger spread

Source: PCIC-2019 Tutorial 1&7

VCBB vs. VCB

IEEE-1584-2018

	Bus Name	Protective Device Name	Bus kV	Bus Bolted Fault (kA)	Bus Arcing Fault (kA)	Prot Dev Bolted Fault (kA)	Prot Dev Arcing Fault (kA)	Trip/ Delay Time (sec.)	Breaker Opening Time/Tol (sec.)	Equip Type	Equip Category	Electrode Config	Box Width (in)		Box Depth (in)	Gap (mm)	Arc Flash Boundary (in)		Incident Energy (cal/cm2)
1	2.4KV LBS	PB106-RELAY ML745	2.40	15.04	12.13	10.12	8.16	2.029	0.0830	SWG 🗸	5KV LBS	VCB -	36	90	30	104	219	36	20.4
1	2.4KV LBS	PB106-RELAY ML745	2.40	15.04	12.87	10.12	8.65	1.729	0.0830	SWG -	5KV LBS	VCBB -	36	90	30	104	203	36	24.4

IEEE-1584-2002

	Bus Name	Protective Device Name	Bus kV	Bus Bolted Fault (kA)	Arcing	Prot Dev Bolted Fault (kA)	Prot Dev Arcing Fault (kA)	Delay	Breaker Opening Time/Tol (sec.)		Equip Type	Gap (mm)	Arc Flash Boundary (in)		Incident Energy (cal/cm2)
1	2.4KV LBS	PB106-RELAY ML745	2.40	15.04	14.50	10.12	9.75	1.274	0.0830	No -	SWG -	104	685	36	21.0

VCB vs. VCBB vs. HCB

IEEE-1584-2018

	Bus Name	Protective Device Name	Bus kV	Bus Bolted Fault (kA)	Prot Dev Bolted Fault (kA)	Prot Dev Arcing Fault (kA)		Breaker Opening Time/Tol (sec.)	Equip Type	Gap (mm)	Busbar Config	Box Width (in)	Box Height (in)	Box Depth (in)	-	Arc Flash Boundary (in)	Incident Energy (cal/cm2)
1	PNBD0 VCB	400A FDR	0.48	6.38	6.38	4.19	0.303	0.0000	PNL 👻	25	VCB 🗸	25	40	10	18	31	2.79
2	PNBD1 VCBB	400A FDR0	0.48	6.38	6.38	4.43	0.2761	0.0000	PNL 👻	25	VCBB 👻	25	40	10	18	30	3.04
3	PNBD2 HCB	400A FDR1	0.48	6.38	6.38	3.97	0.3317	0.0000	PNL 👻	25	HCB 👻	25	40	10	18	40	6.11

IEEE-1584-2002

	Bus Name	Protective Device Name		Bus Bolted Fault (kA)	Prot Dev Bolted Fault (kA)	Prot Dev Arcing Fault (kA)		Breaker Opening Time/Tol (sec.)	Ground	E	quip ype		Gap (mm)	· · · · · · · · · · · · · · · · · · ·	Arc Flash Boundary (in)	Incident Energy (cal/cm2)
1	PNBD2002	400A FDR2	0.48	6.38	6.38	3.80	0.3577	0.0000	Yes 🚽	PN	IL	-	25	18	39	4.17

So, what is going on here??

	Bus Name	Protective Device Name	Bus kV	Bus Bolted Fault (kA)	Bus Arcing Fault (kA)	Prot Dev Bolted Fault (kA)	Prot Dev Arcing Fault (kA)	Trip/ Delay Time (sec.)	Breaker Opening Time/Tol (sec.)	Equ Typ	202	Equip Category	Electrode Config	Box Width (in)	Box Height (in)	Box Depth (in)	Gap (mm)	Arc Flash Boundary (in)	Working Distance (in)	Incident Energy (cal/cm2)
1	#1-75KVA FED LP-RP	90A, BD CAL-2-34A2	0.208	4.76	1.76	4.76	1.76	2.781	0.0000	PNL	•	240V-LP-RP LG	VCB -	20	20	8	25	71	18	10.6
2	#2-75KVA FED LP-RP VCBB	90A, BD CAL-2-34A6	0.208	4.76	1.94	4.76	1.94	2.119	0.0000	PNL	•	240V-LP-RP LG B	VC88	20	20	8	25	54	18	8.68
3	#3-75KVA FED LP-RP 100A FDR	100A, BD CAL-2-34A3	0.208	4.76	1.76	4.76	1.76	3.684	0.0000	PNL	•	240V-LP-RP LG	VCB -	20	20	8	25	84	18	14.0
4	#4-75KVA FED LP-RP VCBB 100A	100A, BD CAL-2-34A9	0.208	4.76	1.94	4.76	1.94	2.791	0.0000	PNL	•	240V-LP-RP LG B	VC88	20	20	8	25	63	18	11.4
5	#5-75KVA FED LP-RP 125A FDR	125A, BD CAL-2-34A4	0.208	4.76	2.04	4.76	2.04	4	0.0000	PNL	•	240V-LP-RP LG	VCB -	20	20	8	25	97	18	17.6
6	#6-75KVA FED LP-RP VCBB 125A	125A, BD CAL-2-34A1 0	0.208	4.76	1.94	4.76	1.94	4	0.0000	PNL	•	240V-LP-RP LG B	VCBB	20	20	8	25	77	18	16.4

Takeaways

Configuration Matters!!

- Electrode configuration makes a big difference in IE
- HCB has worst case IE
- VCB/VCBB-Which to Use? Depends on the OCPD characteristics
 - If not sure on equipment, run both and take more conservative number
- HOA & VCB- IE is close at LV

Takeaways

Electrode configuration makes the biggest difference Software makes study engineer choose

• HCB – Highest Incident Energy

- Drawout Switchgear
- Busduct stabs
- Tranformers
- Termination compartments

Examples

Electrode configuration makes the biggest difference

600V Drawout Switchgear 600V Drawout Switchgear with Iron Frame

HCB

The above information is a list of examples only, only the qualified Study Engineer can decide on what selections to use.

HCB-Transformers

Examples

Electrode configuration makes the biggest difference

15kV / 480V Transformer compartments

480V Transformer compartments

The above information is a list of examples only, only the qualified Study Engineer can decide on what selections to use.

Takeaways

Electrode configuration makes the biggest difference

Low Voltage Power Distribution PNL

VCB vs. VCBB

Low Voltage Fused Disconnect

The above information is a list of examples only, only the qualified Study Engineer can decide on what selections to use.

Low Voltage

Switchboard

IEEE 1584-2018 Highlights Enclosure Dimensions

Enclosure Dimensions

Correction Factor for Larger Enclosures

- Equations normalized for a "typical" box size (20"x20"x20")
- CF used when box is bigger than typical
 Usually found in submittals
- Record enclosure height and width to determine the "equivalent" box size
 Between 20" and 26"
 Between 26" and 49"
 - Greater than 49" use 49"

Enclosure Dimensions

Shallow Option Added

Box considered "shallow" when

- Height and width both less than 20 inches
- ° The depth is less than 8"
- ° System voltage is less than 600V

Box Dimensions

		Bus Name	Protective Device Name	Bus KV	Bus Bolted Fault (kA)	Bus Arcing Fault (kA)	Prot Dev Bolted Fault (kA)	Prot Dev Arcing Fault (kA)	Trip/ Delay Time (sec.)	Breaker Opening Time/Tol (sec.)	Equip Type	Equip Category	Electrode Config	Box Width (in)	Box Height (in)	Box Depth (in)	Gap (mm)	Arc Flash Boundary (in)	Working Distance (in)	Incident Energy (cal/cm2)
Typical	1	CTL PANEL 14-12-12	SUB 7 MCC #1 7-5 ac pro	0.48	22.82	17.34	22.70	17.25	0.05	0.0000	PNL -	CTL PNL 14-12-12	VCB -	12	14	12	25	25	18	2.06
Shallow	2	CTL PANEL 14-12-8	SUB 7 MCC #1 7-5 ac pro	0.48	22.82	17.34	22.70	17.25	0.05	0.0000	PNL	CTL PNL 14-12-8	VCB -	12	14	8	25	20	18	1.37
Typical	3	CTL PANEL 20-20-20	SUB 7 MCC #1 7-5 ac pro	0.48	22.82	17.34	22.70	17.25	0.05	0.0000	PNL	CTL PNL 20-20-20	VCB -	20	20	20	25	25	18	2.06
Typical	4	CTL PANEL 48-20-20	SUB 7 MCC #1 7-5 ac pro	0.48	22.82	17.34	22.70	17.25	0.05	0.0000	PNL	CTL PNL 48-20-20	VCB -	20	48	20	25	22	18	1.64
Typical	5	CTL PANEL 48-48-12	SUB 7 MCC #1 7-5 ac pro	0.48	22.82	17.34	22.70	17.25	0.05	0.0000	PNL	CTL PNL 48-48-12	VCB -	48	48	12	25	21	18	1.56
Typical	6	CTL PANEL 48-48-20	SUB 7 MCC #1 7-5 ac pro	0.48	22.82	17.34	22.70	17.25	0.05	0.0000	PNL	CTL PNL 48-48-20	VCB -	48	48	20	25	21	18	1.56

		Bus Name	Protective Device Name	Bus kV	Bus Bolted Fault (kA)	Bus Arcing Fault (kA)	Prot Dev Bolted Fault (kA)	Prot Dev Arcing Fault (kA)	Trip/ Delay Time (sec.)	Breaker Opening Time/Tol (sec.)	Equip Type	Equip Category	Electrode Config	Box Width (in)	Box Height (in)	Box Depth (in)	Gap (mm)	Arc Flash Boundary (in)	Working Distance (in)	Incident Energy (cal/cm2)
Typical	1	CTL PANEL 14-12-12 B	SUB 7 MCC #1 7-5 ac pro	0.48	22.82	18.69	22.70	18.58	0.05	0.0000	PNL	CTL PNL 14-12-12 B	VCBB -	12	14	12	25	29	18	2.84
Shallow	2	CTL PANEL 14-12-8 B	SUB 7 MCC #1 7-5 ac pro	0.48	22.82	18.69	22.70	18.58	0.05	0.0000	PNL	CTL PNL 14-12-8 B	VCBB .	12	14	8	25	26	18	2.29
Typical	3	CTL PANEL 20-20-20 B	SUB 7 MCC #1 7-5 ac pro	0.48	22.82	18.69	22.70	18.58	0.05	0.0000	PNL	CTL PNL 20-20-20 B	VCBB -	20	20	20	25	29	18	2.84
Typical	4	CTL PANEL 48-20-20 B	SUB 7 MCC #1 7-5 ac pro	0.48	22.82	18.69	22.70	18.58	0.05	0.0000	PNL	CTL PNL 48-20-20 B	VCBB -	20	48	20	25	27	18	2.49
Typical	5	CTL PANEL 48-48-12 B	SUB 7 MCC #1 7-5 ac pro	0.48	22.82	18.69	22.70	18.58	0.05	0.0000	PNL	CTL PNL 48-48-12 B	VCBB -	48	48	12	25	26	18	2.29
Typical	6	CTL PANEL 48-48-20 B	SUB 7 MCC #1 7-5 ac pro	0.48	22.82	18.69	22.70	18.58	0.05	0.0000	PNL	CTL PNL 48-48-20 B	VCBB -	48	48	20	25	26	18	2.29

Takeaways

Enclosure configuration

Box configuration

- Modest difference
 - Larger box by volume=less conservative by a little
 - Shallow box=less conservative=smaller IE
 - Default enclosure size usually sufficient

 Software packages use defaults
 When on the bubble between two PPE levels go back and investigate box size

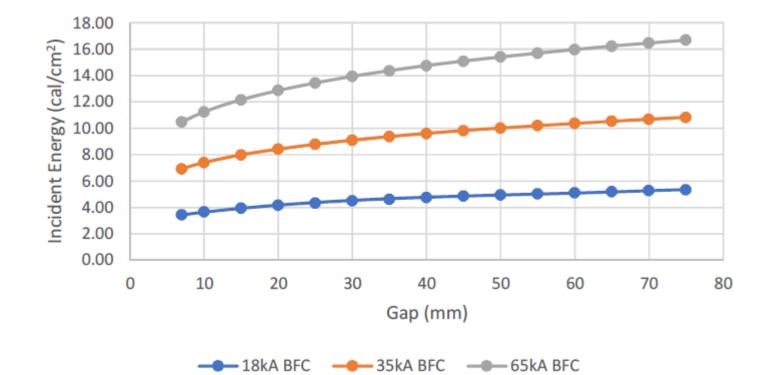
The above information is a list of examples only, only the qualified Study Engineer can decide on what selections to use.

IEEE 1584-2018 Highlights Conductor Gap

Conductor Gap – Defined

- Gap is the distance between conductors
- Greater the gap, greater arc flash incident energy
- Usually not in submittals

 Dangerous to obtain
 Is it worth measuring?



	Bus Name	Protective Device Name	Bus kV	Bus Bolted Fault (kA)	Prot Dev Bolted Fault (kA)	Prot Dev Arcing Fault (kA)	Trip/ Delay Time (sec.)	Breaker Opening Time/Tol (sec.)	Equip Type	Gap (mm)	Busbar Config	Box Width (in)	Box Height (in)	Box Depth (in)	-	Arc Flash Boundary (in)	Incident Energy (cal/cm2)
1	VCBB 25mmGAP	400A FDR3	0.48	6.38	6.38	4.43	0.2761	0.0000	PNL 👻	25	VCBB 🗸	25	40	10	18	30	3.04
2	VCBB 45mmGAP	400A FDR4	0.48	6.38	6.38	4.26	0.2949	0.0000	PNL 👻	45	VCBB 👻	25	40	10	18	33	3.63
3	VCBB 60mmGAP	400A FDR5	0.48	6.38	6.38	4.18	0.3044	0.0000	PNL 👻	60	VCBB 👻	25	40	10	18	35	3.96
4	VCBB 75mmGAP	400A FDR6	0.48	6.38	6.38	4.12	0.312	0.0000	PNL 👻	75	VCBB 🗸	25	40	10	18	36	4.23

IE vs BF

LV system VCB

Conductor Gap – Typical

Table 8—Classes of equipment and typical bus gaps

Equipment class	Typical bus gaps	Enclosure Size (H × W × D)							
	(mm)	SI units (metric)	Imperial units						
15 kV switchgear	152	$1143~mm \times 762~mm \times 762~mm$	45 in \times 30 in \times 30 in						
15 kV MCC	152	$914.4\ mm \times 914.4\ mm \times 914.4\ mm$	36 in × 36 in × 36 in						
5 kV switchgear	104	$914.4\ mm \times 914.4\ mm \times 914.4\ mm$	36 in × 36 in × 36 in						
5 kV switchgear	104	$1143~\text{mm}\times762~\text{mm}\times762~\text{mm}$	45 in \times 30 in \times 30 in						
5 kV MCC	104	$660.4\text{mm} \times 660.4\text{mm} \times 660.4\text{mm}$	26 in \times 26 in \times 26 in						
Low-voltage switchgear	32	$508\mathrm{mm}\times508\mathrm{mm}\times508\mathrm{mm}$	20 in \times 20 in \times 20 in						
Shallow low-voltage MCCs and panelboards	25	355.6 mm × 304.8 mm × ≤203.2 mm	$14 \text{ in} \times 12 \text{ in} \times \leq 8 \text{ in}$						
Deep low-voltage MCCs and panelboards	25	355.6 mm × 304.8 mm × >203.2 mm	14 in \times 12 in \times >8 in						
Cable junction box	13	355.6 mm × 304.8 mm × ≤203.2 mm or 355.6 mm × 304.8 mm × >203.2 mm	$14 \text{ in} \times 12 \text{ in} \times \leq 8 \text{ in}$ or $14 \text{ in} \times 12 \text{ in} \times >8 \text{ in}$						

Takeaways

For Gap

• Gap

Wider gap=more conservative (Higher IE)
Software packages use defaults
Be reasonable in choosing gap

IEEE 1584-2018 Other Key Changes

125kVA Transformer Exception

2002 vs. 2018

Source: IEEE-1584-2018 & IEEE-1584-2002 "Equipment below 240 V need not be considered unless it involves at least one 125kVA or larger lowimpedance transformer in its immediate power supply."

Replaced with "Sustainable arcs are possible but less likely in three-phase systems operating at 240V nominal or less with an available short circuit current below 2000 Amps."

125kVA Transformer Exception

What Does this 2018 Change Mean to You

- More equipment must be included in your study
 - Every device from your 125kVA transformers down to your 30kVA transformers
 - Could dramatically impact the scope and cost of your facility arc flash hazard analyses
 - Should be addressed during your next study update or before

2-second Rule

No Change

- Basically says most people can move away from an arc flash in less than two seconds, but could be slowed down by:
 - Obstacles or barriers
 - Being elevated in a bucket
 - Being restrained by other safety equipment, etc.
- Your studies professional must "use engineering judgement when applying any maximum arc duration time for incident energy exposure calculations"

In-Closing

IEEE 1584

Study Complexity

- New standard makes modeling more complex
 - Based on test data (not theoretical)
 - More accurate
 - Some arc flash values are higher, some lower
- Strongly suggest using commercial software for analysis

General Guide

- Stay in communication with your Qualified Arc Flash Engineer/ Client on what is going on, be reasonable in your assumptions.
 - Vendors are not opening/maintaining equipment if AFIE high
- One label per equipment, keep it simple
- Manufacturers Spending \$\$ on lowering AFIE in their equipment
- Design Engineers Safety by design
 - Must decide if critical load can be de-energized, if not, how to maintain it?

NFPA-70E

Shut down

It's the law!!

130.1- Electrically Safe Work Conditions.

Energized electrical conductors and circuit parts operating at voltages equal to or greater than 50 volts shall be put into an electrically safe work condition before an employee performs work....

130.1(A)- Energized Work.

(1) 130.1(A)(1)- Additional Hazards or Increased Risk.

Energized work shall be permitted where the employer can demonstrate that de-energizing introduces additional hazards or increased risk.

- Interruption of life support
- Deactivation of emergency alarm systems
- Shutdown of hazardous location ventilation equipment

(2) 130.1(A)(2)- Infeasibility

Energized work shall be permitted where the employer can demonstrate that the task to be performed is infeasible in a de-energized state due to equipment design or operation limitations.

- Diagnostics and testing
- Integral part of a continuous process

Thank You

Connect with me on LinkedIn

