Facility Maintenance Best Practices

Making the Most of What You Have

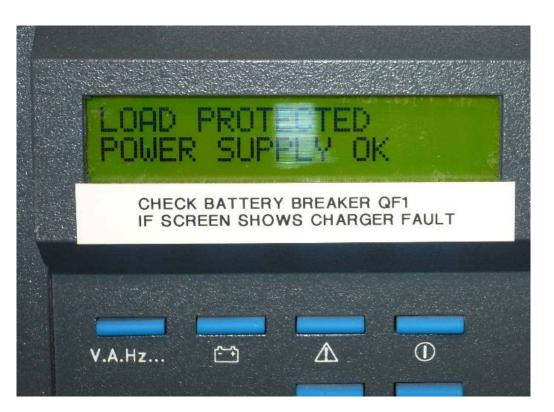
Jeff Womack January 21, 2020

About the Speaker

Jeff Womack

- Vice President & Project Executive with Hood Patterson & Dewar
- 12 years of electrical design experience
 Commercial Electrical Design
 Data Centers
 MTSO Facilities
- 20 years of electrical testing, electrical commissioning experience
 - Data Center Commissioning / Integration
 - $^{\circ}$ Live Site Commissioning
 - Facility Assessments
 - Failure Analysis
 - Acceptance and Maintenance Testing

Agenda


- Facility Maintenance
- NFPA 70B Recommended Practice for Electrical Equipment Maintenance
- What are Best Practices?
- Considering all the angles
- Determining the best approach
- Examples What not to do
- Arc Flash and Other Considerations

An Effective Program Pays Dividends

- Improves equipment lifespan
- Reduces downtime
- Helps prevent accidents, lost production, and loss of profit
- Reduces equipment failure to a minimum consistent with good economic judgement
- Success requires management support

How Much Do You Really Need?

- Which recommendations should you follow?
- What is a best practice?
- Where should you spend the money?

Basics

- A good program begins with good design
- Well qualified and properly trained individual needs to be responsible
- Maintenance Plan is very Important
- Test and analysis
- Programmed inspections
- Diagrams
- Maintenance Procedures Do they meet the minimums and maximums?

Telecom Provider Generator Abuse

Generator load testing

- 100% block loading every week leads to damage of multiple alternators
- 2nd Failure prompted testing of all generators

Credit Card Company has Facilities and IT disconnect

• IT equipment added

 Facilities not allowed to shut down power to verify proper A-B cording

- No coordination between departments
- UPS system failure reveals dual corded loads are connected to the same power source

TV Service Provider Budget Freeze

- Equipment is out of date and needs upgrade
- Upper management doesn't understand importance
- Budget gets lost in buyout
- UPS battery failure drops critical load
- Failures don't wait for decisions to be made

Airline Service Provider puts on Blinders

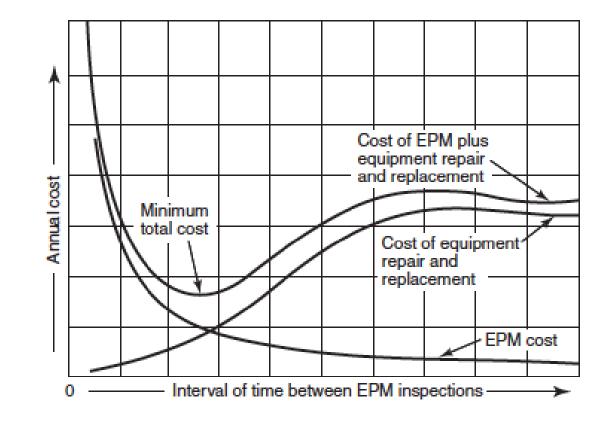
- Facility constructed in early 1990s
- Never had a utility power disruption
- Maintenance personnel have difficulty convincing management to replace obsolete UPS modules
- At the time of replacement there were not enough batteries left in the string to support an outage

NFPA 70B-2019

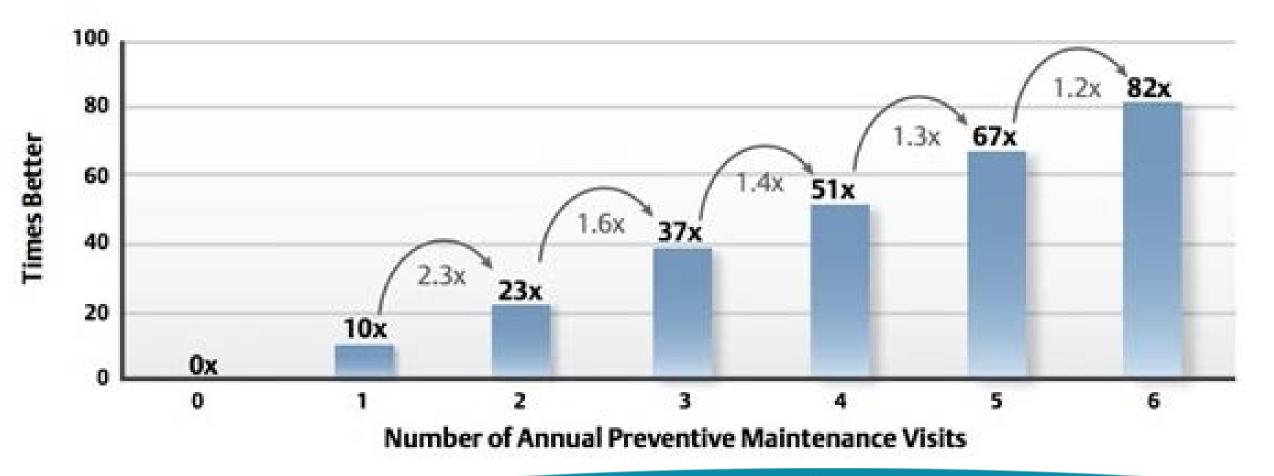
NFPA 70B-2019

Recommended Practice for Electrical Equipment Maintenance

- Intended to reduce hazards to life and property that can result from failure or malfunction of electrical systems and equipment
- Explains the benefits of an Effective Electrical Preventative Maintenance (EPM) program
- Explains the function, requirements, and economic considerations used to establish and EPM program
- Not intended to replace manufacturers recommendations


NFPA 70B-2019

Reference Publications


- NFPA National Fire Protection Association
- ATSM American Society for Testing and Materials
- EASA Electrical Apparatus Service Association
- IEEE Institute of Electrical and Electronics Engineers
- NEMA National Electrical Manufacturers Association
- NETA International Electrical Testing Association
- OSHA Occupational Safety and Health Administration
- UL Underwriters Laboratories
- Publications from public agencies such as FEMA

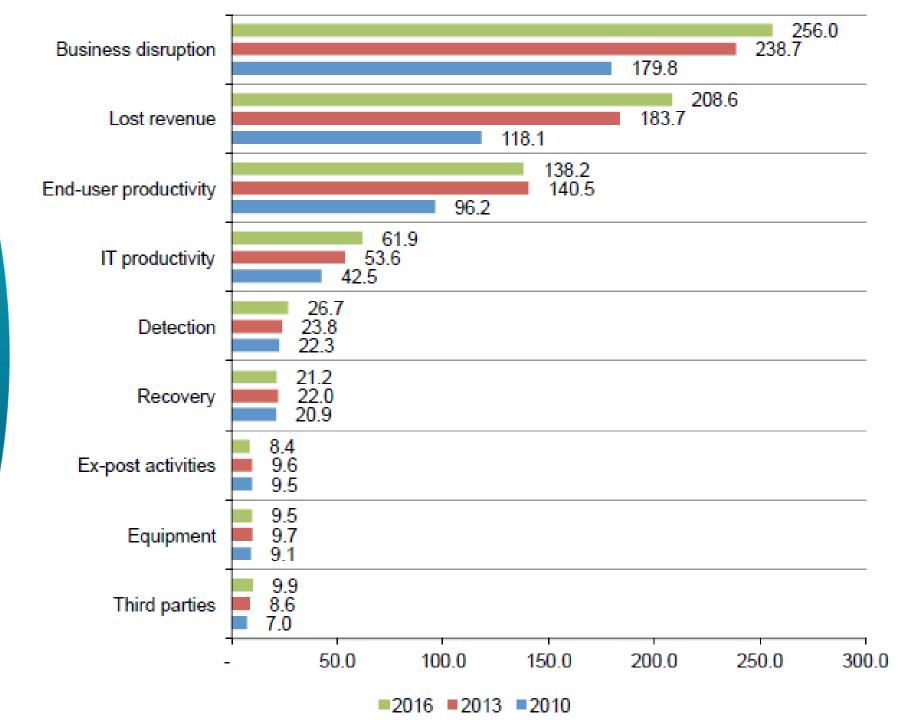
How often?

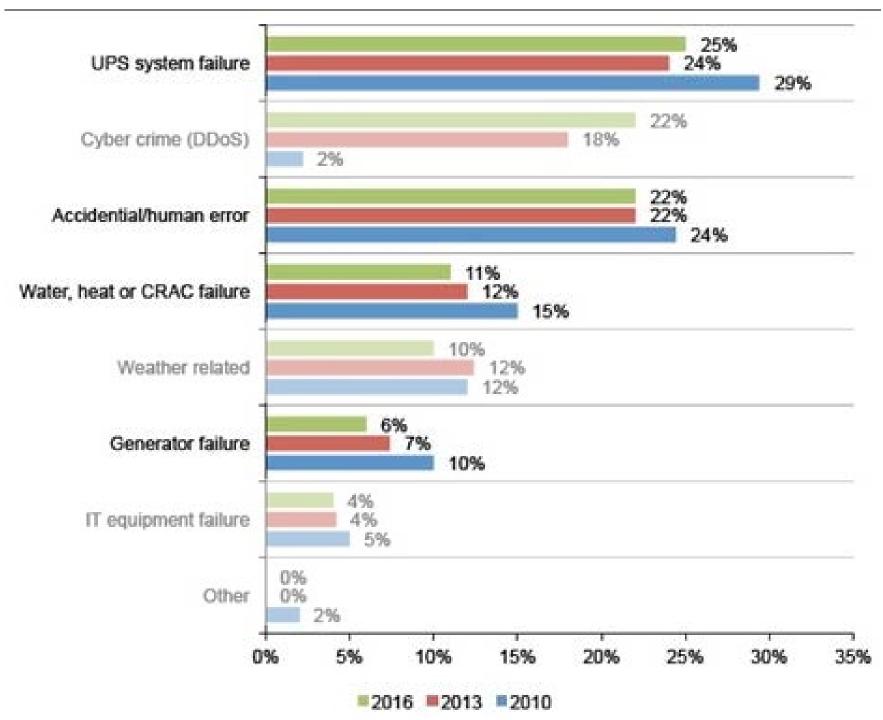
- Inspection Frequency
- Maintenance Frequency
- Replacement Frequency

Preventative Maintenance Frequency Impact

NETA Tables

		Equipment Condition				
		Poor	Average	Good		
Equipment Reliability Requirement	Low	1.0	2.0	2.5		
	Medium	0.50	1.0	1.5		
	High	0.25	0.50	0.75		


	Frequency of Maintenance Tests Inspections and Tests Frequency in Months (Multiply These Values by the Factor in the Maintenance Frequency Matrix)							
Section	Description	Visual	Visual & Mechanical	Visual & Mechanical & Electrical				
7.1	Switchgear & Switchboard Assemblies	12	12	24				
7.2	Transformers							
7.2.1.1	Small Dry-Type Transformers	2	12	36				
7.2.1.2	Large Dry-Type Transformers	1	12	24				


County Jail Starts Riots

- Infrared scan never completed
- Aluminum bussing in switchgear start phase to phase "busicle"
- Arc between phases clears the "busicle"
- B phase voltage goes from 277 to 42 due to bad connection

- Average cost increased from \$505,502 to \$740,357 between 2010 & 2016
 38% increase
- Maximum downtime cost of the 63 data centers studied was \$2,409,991
- UPS system failure still the number one cause

Choosing an Approach

• Run to failure

° Reactive

Choosing an Approach

• Run to failure

° Reactive

• Predictive or condition-based maintenance • Test & trend, then react

Choosing an Approach

• Run to failure

• Reactive

Predictive or condition-based maintenance
 Test & trend, then react

• Preventative or condition-based

 Based on run time, condition, or operator recommendation

Choosing an Approach

• Run to failure

Reactive

• Predictive or condition-based maintenance • Test & trend, then react

• Preventative or condition-based

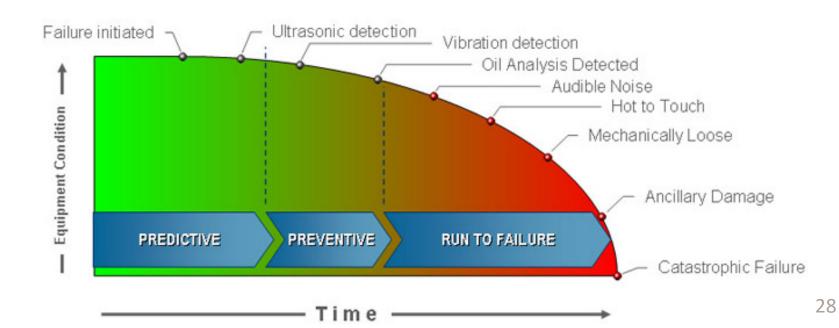
- Based on run time, condition, or operator recommendation
- Reliability Centered Maintenance (RCM)
 - When it is too big or too expensive to treat every component the same

Reliability Centered Maintenance

Defined

- Determines a logical way to determine if a PM makes sense for a given item
- Preserves system functionality
- Focused on the system rather than the component
- Acknowledges design limitations
- Is an ongoing process

Reliability Centered Maintenance


Elements

- Functions of equipment
- Functional failures likelihood
- Failure modes/failure analysis
- Failure effects/logic tree analysis
- Failure consequences
- Mean Time Between Failure Calculations
- Proactive tasks, task intervals
- Default actions

Reliability Centered Maintenance

Elements

- What does the asset do
- How can the asset or its sub-components fail
- What are the likely failure modes • Fail to Bypass, EPO
- What are the likely chain of events associated with the failure
- What are the Costs associated with the failure

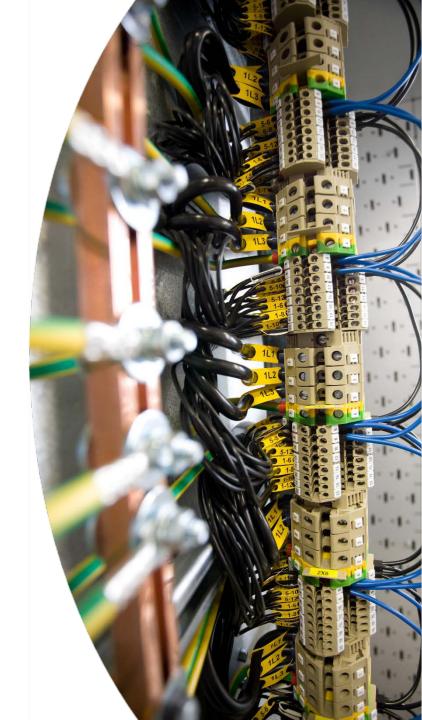
From Design to Commissioning Through End-of-Life

Design

- Acceptance testing (commissioning)
- Develop commissioning plan
- Develop scripts
- Execute test
- Training
- Preparation, records, procedures, and tools for maintenance

Internet Service Provider Learns Value

- CTs tested
- Relays tested
- Interconnect wiring not proven via current injection
- Differential circuits wired improperly
- Caused startup delays because generators wouldn't stay connected to the bus


Wireless Communication Company Loses Access

- Electrical and mechanical systems were tested and commissioned
- Did not fail power to individual panels
- Facility-powered gate did not have manual release
- No walk gate
- Facility drops critical load after a generator failure while fire department cuts gate open

BMS System Operational Shortcut

- Abbreviated Cx does not reveal system timer settings
- Back up air cooled chillers shut down after 45 minutes after transfer

Establishing a Program

Consider Your Unique Business Situation

Business model and objectives

- ° System design
- Growth strategy
- Work blackout periods
- Customer requirements/Service Level Agreements
- Risk tolerance
 - IT redundancy
- Operating cost control priorities
 - Improving energy efficiency
 - Extending equipment lifecycles
 - Reducing/mitigating downtime

Establishing a Program

Facility Factors to Consider

• Future Use

- Site expansion strategy/capability
- Design deficiencies and challenges
 - Redundancy (or lack thereof)
 - Physical constraints

Environmental considerations Seasonal impact on energy consumption Location/regional impacts

Establishing a Program

Facility Factors to Consider

- Safety is paramount. Always.
 - Proper labeling
 - Lock out/tag out

Installed equipment

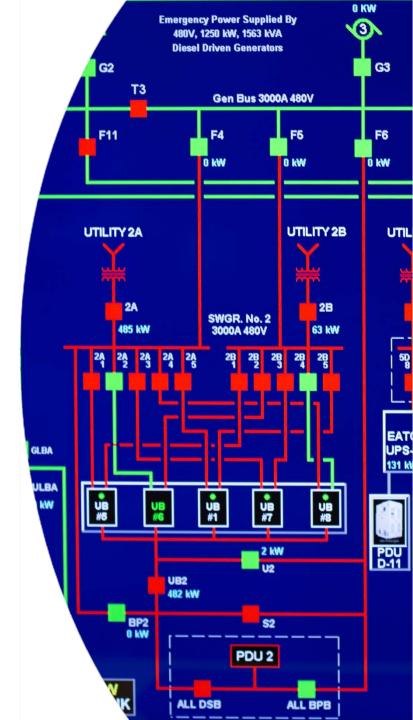
- Existing maintenance agreements/warranties
- Legacy equipment
 service/parts availability
- Manufacturer
- recommendations
- ° Criticality of components

Maintenance Program

Facility Factors to Consider

• Maintain vs. replace

- Consider total cost of ownership
- Expected lifespan remaining
- Physical access constraints
- Availability of parts/qualified repair technicians


• System redundancy

° Affects how maintenance is conducted

Equipment Maintenance

Resource Considerations

- Standard procedures
 Operating
 - Maintenance
- Accurate drawings and documentation
- Realistic schedules
- Maintenance personnel
 In-house or outsourced
 Vendor selection
 Capabilities

Maintenance Program

Logistical Considerations

Restricted access/maintenance times

 Additional costs such as after-hours/weekend shut down, load transfer, etc.

• Resources and training of personnel

- In-house support staff
- Equipment manufacturer staff
- ° 3rd party consultants
- Maintenance service provider

Equipment Maintenance

Personnel Safety

• NFPA 70E

 Proper grounding during maintenance

System Studies

- Power Quality
- Short Circuit Coordination Studies / Arc Flash Studies
- Load Flow Studies
- Reliability Studies / Risk Assessment Studies / Mean Time Between Failure Studies
- Maintenance Related Design Studies

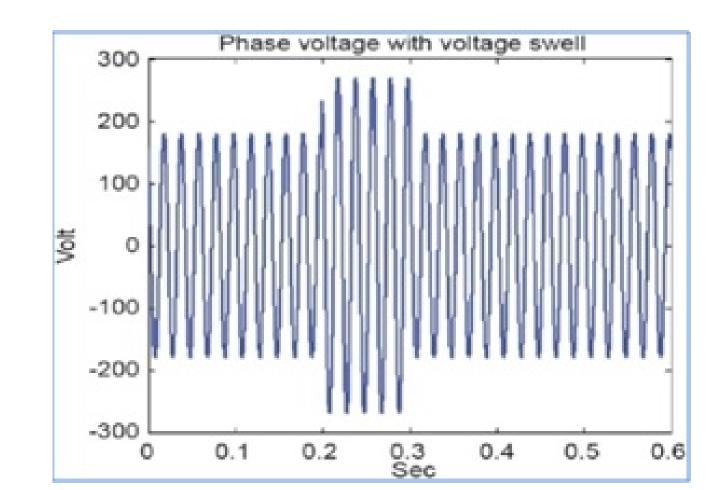
Power Quality

• Harmonics

- Influenced voltage waveform
- Zero crossings
- Noise Interference
- Equipment Failure
- Nuisance operation

• Transients

- Equipment damage
- Mis-operation



Power Quality

- Voltage Sags and Swells

 Outages
 Equipment damage
- Unbalanced
 Voltages

 Motor damage
 Conductor heating

Testing and Test Methods

Acceptance testing

Establishing your baseline

- Maintenance testing
 Routine
 - Special
- Pretest circuit analysis
- As-found and as-left test
- Frequency of test

Electrical Equipment Maintenance

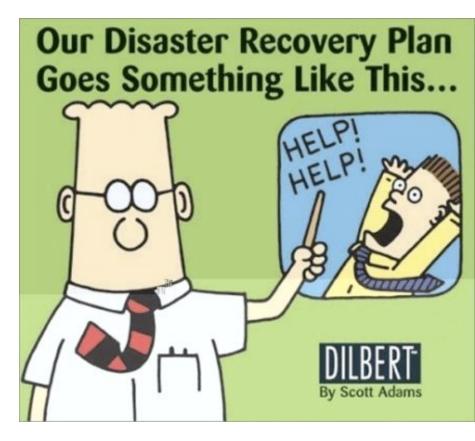
Long Intervals Between Shutdowns

- In many cases required more frequent maintenance
- More frequent non-invasive testing such as Infrared or Ultrasonic scanning
- More thorough testing when an outage can be facilitated

Project Example

Retail Company Cuts Power Rather than Prices

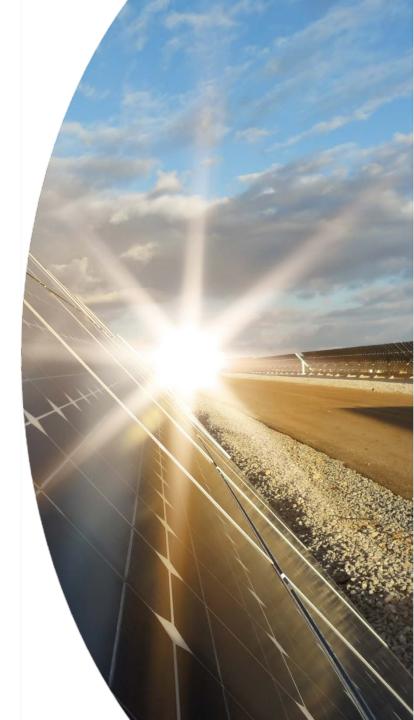
- For MV breaker maintenance, critical load transferred to system bypass
- Bypass breaker (480 volt, 4000 ampere) with new trip unit was improperly installed
 Caused breaker to revert to
 - 1600 ampere trip setting
 Load was 2850 amperes


Breaker was only secondary injection tested

 Issue would've been found with primary injection

Disaster Recovery

- Limit damage
- Assess damage
- Prioritize the corrective action
- Repair or replace
- Execute
- Emergency Procedures
- Adequate
 Emergency
 Documentation



Changing Equipment

PV, Electrical Charging, Fuel Cells, and Wind Power Systems

Cleaning

- Periodic maintenance
- Structural considerations
- Yaw systems
- Cable support systems
- Must develop a plan for new systems

Safety First

Arc Flash

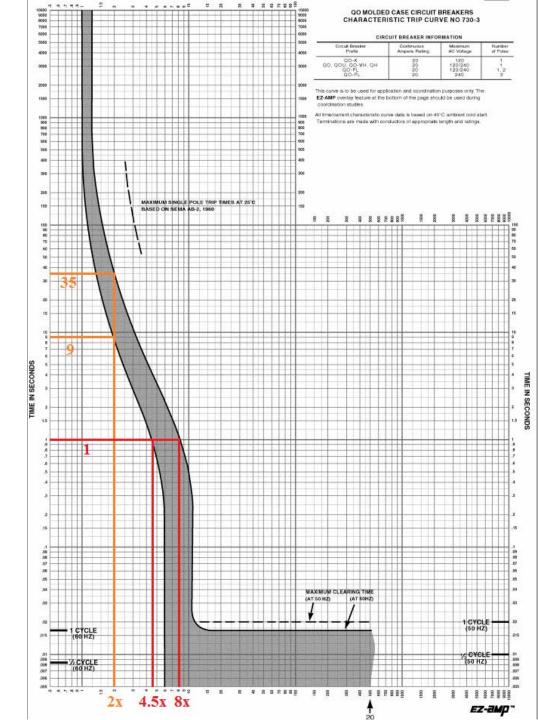
- What is an arcing fault
- What are the danger levels
- Misunderstandings exist

Safety First

Arc Flash Considerations

- Critical power systems are complex
- Multiple energy sources
- Multiple operating modes
- Code only requires worst case conditions to be posted

Fault Current and Incident Energy

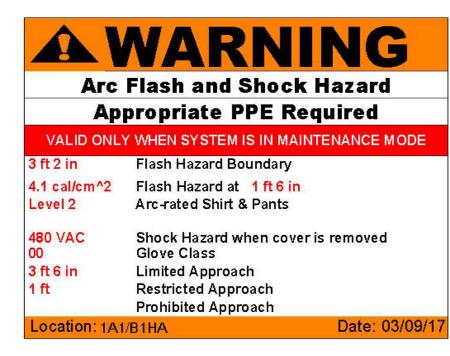

Operating Mode	Available Fault Current	Incident Energy at UPS module A1 (cal/cm2)
Closed transition Transfer to Generators	47,490	28
Operating on Utility A	47,120	27
Operating on Utility B	40,330	122
Operating on (2) 2500 kW Generators (N+1)	23,280	82
Operating on (2) 2500 kW Generators with incident energy reduction enabled at generator main tie breaker	23,280	69
Operating on (2) 2500 kW Generators with incident energy reduction enabled at feeder breaker	23,280	2.7

Note: Level of fault current does not correlate with the incident energy level because of the speed at which and arcing fault will be cleared

Fault Current and Incident Energy

• Depends on

- Breaker curves
- Breaker settings
- Automatic failovers
- Maintenance mode switches make the most difference
- Has to be modeled to be determined


Energized Maintenance

- Arc flash mitigation
- Zone Interlock
- Incident energy reduction switches
- Label can provide energy level for additional modes

NO SAFE PPE EXISTS ENERGIZED WORK PROHIBITED

Arc Flash Hazard Boundar Working Distance	γ 21 ft 2 in 1 ft 6 in	Incident Energy in cal/cm^2
Shock Hazard Exposure Glove Class Limited Approach Restricted Approach	480 VAC 00 3 ft 6 in 1 ft	92 PPE Requirements Do not work on live!
Equipment ID: BLDG 151	Ma	x Available Fault: 19.70 kA Date: 01/10/17
Hood-Patterson & Dewar, Inc		hoodpd.com 850 Center Way, Norcross, GA 30071

Plan Maintenance on the best Power Source Coordinate maintenance operations and incident energy label with operating procedures

- Limit risk by considering all the options
- Maximize maintenance access

Project Example

Major Airline, Minor Maintenance

• Significant costs due to failure

- Flights grounded world wide for 24 hours
- Flights cancelled, delayed or otherwise affected for 3+ days
 Bad press, reputation

Maintenance Program

Tracking Results

- Develop metrics
- Develop Key Performance Indicators (KPI)
- Track and trend to improve the process
- Learn from each test, failure, inspection, etc.
- Modify the plan based on new information

Typical Pitfalls

- Maintenance budget is the first to go
- Afraid to operate the system
- Afraid to shut down components
- Need approval for a black hole test (pull the plug)
- Don't learn from mistakes, they learn to run from mistakes

In Summary

- Understand your business model, strategies, challenges, and priorities
- Obtain an independent comprehensive facility assessment
- Identify existing and needed resources, procedures, and training
- Determine your preferred maintenance approach (RCM)
- Develop a plan based on your real-world facility, conditions, and requirements
- Track and trend KPI to monitor results and promote continuous improvement
- Don't generalize

Thank You

Connect with me on LinkedIn

