

NEC Mandated Selective Coordination

Challenges and Solutions

IEEE IAS Meeting May 16, 2011

© 2010 Eaton Corporation. All rights reserved

Background and Definitions

© 2010 Eaton Corporation. All rights reserved

Selective Coordination & The National Electrical Code

			Ν		SIONS		
Article	Title	1993	1996	1999	2002	2005	2008
100	Definitions					*	
517	Healthcare Facilities					517.26	517.26
620	Elevators, Dumbwaiters, Escalators, Moving Walks, Wheel Chair Lifts, and Stairway Chair Lifts	620.51(a)	620.62	620.62	620.62	620.62	620.62
700	Emergency Systems					700.27	700.27 Exception
701	Legally Required Standby Systems					701.18	701.18 Exception
708	Critical Operations Power Systems (COPS)						708.54

No significant changes to Selective Coordination in 2011 National Electrical Code

Selective Coordination -Background

- 2005 National Electric Code (NEC) Article 100 definition "Coordination (Selective)":
 - "Localization of an overcurrent condition to restrict outages to the circuit or equipment affected, accomplished by the choice of overcurrent protective devices and their ratings or settings."

Simply stated: When ONLY the overcurrent device protecting the specific circuit that has an overload or fault opens to clear it.

Selective Coordination - Background

- Required for Elevators since 1993 NEC.
- Added to 2005 NEC for Emergency Systems (Art. 700.27) and Legally Required Standby Systems (Art. 701.18).
- When accepted into 2005 NEC Article 700, by omission it became a requirement for "Essential electrical systems" of Health Care Facilities (Art. 517.26) as well.

Selective Coordination Challenges

- Interpretation
- Design
- Enforcement

Challenge - Interpretation

- Which Devices are Required to be Selectively Coordinated?
 - 700.27 states, "Emergency system(s) overcurrent devices shall be selectively coordinated with all supply side overcurrent protective devices."
 - Similarly, 701.27 states, "Legally required standby system(s) overcurrent devices shall be selectively coordinated with all supply side overcurrent protective devices."

Which devices are required to be Selectively Coordinated?

© 2009 Eaton Corporation. All rights reserved

Powering Business Worldwide

Which devices are required to be Selectively Coordinated?

Which devices are required to be Selectively Coordinated?

- Answer: It is up to the Authority Having Jurisdiction (AHJ).
 - Jurisdictions with written clarification for Generator Side only: Chicago, Las Vegas, State of Oregon, State of Washington*, State of Wisconsin
 - Jurisdictions rumored to be requiring coordination up to the Normal Source: Charlotte, NC
 - Actual intent of the NEC is somewhat unclear

Challenge - Interpretation

- What level of Selective Coordination is required?
 - Total Selective Coordination
 - 0.01 seconds
 - 0.1 seconds

What Level of Selective Coordination is Required?

- Reasons for Considering 0.1 or 0.01 seconds instead of Total Selective Coordination*
 - Achieving total selective coordination may be nearly impossible for certain systems
 - Achieving total selective coordination may result in undesirable levels of arc flash energy
 - Verification of total selective coordination is difficult.
 - Some jurisdictions have defined a time cut-off for selective coordination

* Choosing a level other than total selective coordination without AHJ approval is risky.

What Level of Selective Coordination is Required?

- Some jurisdictions have defined a level of 0.1 or 0.01 for selective coordination*
 - State of California Healthcare (OSHPD) 0.1
 - State of Florida Healthcare (AHCA) 0.1
 - City of Memphis 0.1
 - Las Vegas 0.01, 0.1 allowable if 0.01 can not be achieved
 - State of Oregon 0.01
 - City of Seattle 0.1
 - NFPA 99 (pending) 0.1
 - But not Georgia...

* This list is subject to change and should always be verified with the AHJ

What Level of Selective Coordination is Required?

- What do these time limits mean in the real world?
 - Design to worst case fault currents bolted fault
 - Most real world faults are lower level arcing faults or ground faults
 - Coordination down to 0.01 seconds allows coordination for all but the highest levels of fault current
 - Coordination down to 0.1 seconds allows coordination for overloads and typical arcing fault levels

What Do These Time Limits Mean in the Real World?

CURRENT IN AMPERES

What Do These Time Limits Mean in the Real World?

CURRENT IN AMPERES

16

Beyond the Curves - Manufacturer's Tables

Challenge - Design

• How Do I Design a System that can be Coordinated?

Selective Coordination

- Design Tips
 - 1. Flatten the system
 - Limit the number of levels of OCPD's
 - Reduces the number of potential coordination problems
 - Limit levels of 480v devices to (3)
 - Depending on fault current, 1st and 2nd levels may need to be Power Circuit Breakers (UL1558 Switchgear)
 - Distribution Panels
 - If possible, avoid 277v lighting
 - Otherwise, don't locate lighting panels in same room as Distribution panels
 - Or, utilize isolation transformers to knock down fault current

Selective Coordination

2. Transformer Breakers

- Do not size primary transformer breakers at 125%
- NEC allows primary up to 250%
 - NOTE: This changes the cable size required
- 480v primary breakers need to be sized around 200%
 - Problem is not with 208v secondary breaker, but with the next level branch breakers (BAB)
- Always size secondary breakers to 125% (and round up)
 - NEC 450-3(B) allows you to round up to the next standard rating
 - Needed to allow coordination between secondary main and feeders

Simplified One-Line

Simplified One-Line – Fault Currents

Simplified One-Line – System Cost – Standard Devices

Simplified One-Line – Device Selection

× /	Microsoft Excel	- Selectiv	e Coordinatio	n Tables R3 - 4-1-2011.xls	3														d X	
:	Eile Edit ⊻iew Inse	ert F <u>o</u> rmat <u>T</u> o	ools <u>D</u> ata <u>W</u> indow	Help Adobe PDF												Туре	e a questio	n for help	▼_ 8 ×	
	🞽 🖬 🖪 🖨 🖪 🖸	X 2 V	🖻 🖺 🔻 🟈 💆 🕇	🔍 🚽 🥵 Σ 👻 灯 🤾 🧎 🕹 80%	💌 🕜 🥃 İ Arial		• 12	• B I	Ū⊫		\$ %	• • • • • • •	.00	(第二日 - 4	3 <mark>) - A</mark> -	-				
: 🛅	1 2 2 2 3 3 5	50 30	🔁 💎 Reply with Cha	anges End Review																
1	AR50 -	£ 12																		
	A B	C	D	E	F	G	Н	l. T	J	K	Ľ	М	N	0	T	U	V	W	XX	
1	MCCB Selec	tive Coo	ordination C	Combinations — Test	Data (Al	I Value	s in kA	IC rm	s Cu	rrent	Leve	els at	480\	/ac or	Less				1100	
2					Line Side Brea	ker (Standard	d and Curre	nt Limiting	Frames)					1					
Upstream Breaker																				
4				Duralise Familie a	EG	F	F	F	F	F	F	J	J	J	К	К	K	K	ŀ	
5				Breaker Family -> Type Trip Unit ->	T/M	Т /М	T/M	T/M	ETU	ETU	ETU	T/M	T/M	T/M	T/M	T/M	T/M	ETU	El	
6		$\langle \rangle$		Digitrip RMS Trip Unit ->		-	-	-	310+	310+	310+	()	-	-			_	310	31	
7				Optim Trip Unit ->	_	-	—		—			-	—	-	701 0	=	_	550, 1050) 550,	
8			<u> </u>	Minimum Trip (Plug/Trip) ->	125A	100A	150A	225A	15A	60A	100A	70A	150A	250A	100A	200A	400A	70A	12	
9	Downstream	n		Maximum Trip (Frame) ->	125A	100A	200A	225A	80A	160A	225A	125A	225A	250A	175A	350A	400A	125A	25	
10	Breaker		\sim	Pow-R-Line : Main - >	3E	ţ		1a,2a,3a,3	3E —		+	-	За		•		<u> </u>	,2a,3a,3E,4		
11	L		\	Pow-R-Line : Branch ->	3E	+		3a,4,Swb	<u>d — </u>			-	4,Swbd	\rightarrow	•		<u> </u>	4,Swbd		
12		(10 kA at 240v	ac) 1 2 and 3 Pole	PowR-Line : Sub-Feed ->		-		1a,2a,3E	<u> </u>			<u> </u>	38		-			a,2a,3a,3E		
13	DR, DAD, HQF and QC	(10 KA at 240V	Pow-R-Line P	anelboard / Swbd																
15		Main	Branch	Sub-Feed																
16	15		1a,3a,4, Swbd		1.2	1.0	1.5	2.2	0.6	1.2	2.3	1.0	2.1	4.0	2.5	5.0	10	8.0	6	
17	20	8 1 - 14	1a,3a,4, Swbd	3 1 1 7	1.2	1.0	1.5	2.2	0.6	1.2	2.3	1.0	2.1	3.4	2.0	4.0	8.0	2.5	5	
18	30 40	_	18,38,4, SWD0 18,38,4 Swbd		1.2	1.0	1.0	22	0.0	1.2	23	0.7	15	34	2.0	4.0	8.0 6.0	15	с И	
20	50		1a,3a,4, Swbd		0.8	-	1.5	2.2		1.2	2.3	-	1.5	2.5	1.2	3.0	6.0	1.5	4	
21	60	1a	1a,3a,4, Swbd	a . 1 7	0.8	87.57	1.5	2.2		1.2	2.3	-	1.5	2.5	000000 100000	3.0	6.0	1.5	4	
22	70	1a	1a,3a,4, Swbd	—	(<u></u>	—	1.5	2.2	<u></u> 2	1.2	2.3	<u></u>	1.5	2.5		2.5	5.0		3	
23	80	1a 1-	1a,3a,4, Swbd		1	37 77 7	6- 6	2.2	10 13		2.3	10 -00		2.5	10 - 10 F	2.5	5.0	0-0	3	
24	90	18 19	1a,3a,4, Swbd		_	_	_	× 1.2		_	× 2.3		_	2.3	_	2.5	5.0 5.0	_	r 3	
20	BRH OPHW OBHW an	nd QCHW (22 k	A at 240vac) 1, 2 and	3-Pole		11 - 11 1	0.00	1.0	(a. 73)	10.00	2.0	- (A. 2)	0.20	2.0		2.0	0,0	G. 17		
29	brail, ai rin, abrin ai		Pow-R-Line Pa	anelboard / Swbd																
30		Main	Branch	Sub-Feed																
31	15	i. Tresh	1a,3a,4, Swbd	8 <u></u> 8	1.2	1.0	1.5	2.2	0.6	1.2	2.3	1.0	2.1	4.0	2.5	5.0	10	3.0	6	
32	20		1a,3a,4, Swbd	-	1.2	1.0	1.5	2.2	0.6	1.2	2.3	1.0	2.1	3.4	2.0	4.0	8.0	2.5	5	
33	30	17-14	1a,3a,4, Swbd	3	1.2	1.0	1.5	2.2	0.6	1.2	2.3	0.7	2.1	3.4	2.0	4.0	8.0	2.5	5	
34	40		1a,3a,4, Swbd	-	0.8	1.0	1.5	2.2	U.6	1.2	2.3		1.5	3.4	1.2	3.0	6.0	1.5 • • • •	- 4	
H ·	♦ ► ► 100% Selection	ctive / 0.1 Se	conds /						<										>	
Read	ty																			
-	start 🛛 🖉 🖾	° 🖉 2 1.	👻 🖸 2 M. 👻 📐	7 A. 👻 🔞 Bid 🛅 2 W. 👻 📓	4 M. 👻 🛅 PNI	🖗 SKM	И 🛛 😫 4	M. 👻 🛛 S	earch Desk	top						2 🔍		₩ % 😚	6:33 PM	

Simplified One-Line – LE1 Feeder Breaker Change

Simplified One-Line – Device Selection Continued

	licrosoft Exce	l - Selecti	ve Coordinat	ion Tables R3 - 4-1-201	1.xls														_ 7 🗙
	Eile Edit ⊻iew In	sert F <u>o</u> rmat	<u>T</u> ools <u>D</u> ata <u>W</u> ind	ow <u>H</u> elp Ado <u>b</u> e PDF												Туре і	a questior	for help	▼_ @ ×
D	🛎 🖬 🖪 A I 🖉 I	3 1 🧐 🔝 🐰	(🗈 🖹 - 🏈 🦃	- (² - 2 , Σ - <u>2</u> ↓ <u>3</u> ↓ <u>11</u> , 4 <u>3</u> , 7.	5% 🗸	0 E i A	Arial		• 12 •	BIU	E E E	-2- \$ %	• •.0 •	20 # # #	- <u>()</u> - <u>A</u>	-			
	80 80 CI 😎 XI I	万ち日日	I 📾 🕅 🕅 Reply with	Changes End Review															
-																			
<u> </u>		r 12																	
	A B	C C	D	E	Т	U	V	W	X	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH 🔨
1	MCCB Selec	ctive Co	ordination	Combinations — Te	or L	ess							and the second						
2	\																		
(*	\backslash						6	ALL A		4	5.	-	in the second	5	1		1		-
	\sim						l	.0.9.5				0 0			1	aliate"	1		
		Unaturan					1									2 2			1 · · ·
	$\langle \rangle$	Breaker	→									and the					1	1	福昌者
	$\langle \rangle$															-		1	
	/															0.0.0	L.		- Hilling
3		\langle					1	K-Frame Breaker				L-Frame Breat	kor			LG 600 Ampere Breaker			LG 600 Ampere
4				Breaker Family ->	ĸ	ĸ	ĸ	ĸ	ĸ	ĸ	LD	LD	LD	LD	LHH	LHH	LHH	LG	LG
5		$\langle \rangle$		Type Trip Unit ->	T/M	T/M	T/M	210	210 210	210 210	T/M	T/M	T/M	210 210	T/M	T/M	T/M	ETU 310+	ETU 310+
0				Digitrip RMS Trip Unit ->				010	010	.010			000	510	0			0101	
			\backslash	Optim Trip Unit ->	14 <u>-</u> 74	(<u>)</u>		550, 1050	550, 1050	550, 1050	17	17-11	17	550, 1050	10		9 <u>7</u> 72		-
7			\sim	optim trip one s	1.175912.254	NAROJENNO	10000000000	2012/201	104444	vertententri - X		147521521-1	enter en tr	200A (Ontim)	1.24547455565	902/2426		90394905	
8			$\overline{\}$	Minimum Trip (Plug/Trip) ->	100A	200A	400A	70A	125A	200A	300A	400A	600A	300A (Digi)	125A	175A	225A	100A	160A
9	Downstrean	1	\sim	Maximum Trip (Frame) ->	175A	350A	400A	125A	250A	400A	350A	500A	600A	600A	150A	200A	400A	250A	400A
10	Breaker		$\overline{)}$	Pow-R-Line : Main ->	-		1a			-			+,5Wbd -		+	1a,2a,3a,3⊟,4 	\rightarrow	_	2
12	ł		\backslash	PowR-Line : Sub-Feed ->	4		1;	4,5%6u -			-				-	4,000u		-	<u>- 4,5%</u>
84 F	Family (FD, HFD, FD	C, FDB(150A), E	EHD(100A), FDE, HFI	DE, FDCE)	1														
85			Pow-R-Line P	anelboard / Swbd															
86	15	Main	Branch	Sub-Feed	2.0	25	5.0	25	4.0	5.0	10	10	10	10	7.5	14		4.0	10
87	40		3a,4,5wbu 3a,4,Swbd		1.6	2.5	5.0	2.5	4.0 • 0.2	× 4.2	8.3	8.3	12	12	3.2	10	1 6	4.0 3.2	8.3
89	100	1a,2a,3a,3E	3a,4,Swbd	1a,2a,3a,3E	800	2.3	3.2		3.2	4.0	7.0	7.0	12	12	8 <u>110</u> 5	10	14	3.2	7.0
90	225	1a,2a,3a,3E	3a,4,Swbd	1a,2a,3a,3E	-		3.2	1		4.0	-	7.0	12	12	10-00		12		7.0
105	Family (JDB, JD, HJD	, JDC)	Pow-R-Line P	anelboard / Swbd															
107		Main	Branch	Sub-Feed															
108	70	-	4,Swbd		(2.0	3.2	-	2.5	4.0	6.0	8.0	12	12	3.2	7.6	12.7	2.8	8.0
109	125		4,Swbd	1- 0- 0-		- ;	3.2	-	2.5	3.7	6.0	7.0	12	12	5 	7.6	10	2.8	7.0
110	CL 250 Eamily Curren	Za,3a,4	4,5W00	Ta,2a,3a			3.2			a.o		7.0	10	10	_		10		7.0
112	oc zoo r anny oarren	c Ennening	Pow-R-Line P	anelboard / Swbd															
113		Main	Branch	Sub-Feed								ante							
114	125	4 <u></u> 1	4,Swbd			-	3.7	1 	2.5	4.2	4.2	4.2	17	17	8	-	12.7	2.8	4.2
115	200		4,Swbd		-		3.2		·	3.7	-	3.2	17	17	3 	+- C	10	113 arr	3.2
117 L	CL 400 Family Curren	t Limitina	1 4,5Wbu										11			_			
118			Pow-R-Line P	anelboard / Swbd															
119		Main	Branch	Sub-Feed						-									
120	200	<u> </u>	4,Swbd				3.2	7007	0112 8	3.2		3.2	17	17		<u> </u>	10	<u> </u>	3.2 🍹 🔽
M ·	▶ ▶ \100% Sel	ective / 0.1 S	Seconds /							<									>
Read	1																		
-	start 0	0 × 10 21	02N - A	- 8 A 👻 🔞 Bid 🗀 2 V 👻 💌	4 M 👻	🗄 PN	🚸 SK	- 2 4M	F Eat.	Search	Desktop					0 0 7 0		 & @	7:18 PM

Simplified One-Line – Device Selection Continued

Simplified One-Line – Generator Fault Currents

Carbon Section Control in the first f		Microsoft Exce	l - Selecti	ive Coordina	tion Tables R3 - 4-1-201	1.xls															ΞX
] Eile Edit ⊻iew In	sert F <u>o</u> rmat	<u>T</u> ools <u>D</u> ata <u>W</u> ind	dow <u>H</u> elp Ado <u>b</u> e PDF													Type a qu	estion fo	help 🗖	- 8 ×
Bit Bit Difference Difference <thdifference< th=""> Difference</thdifference<>		6666	3 1 🧐 🔝 1 3	6 🗅 🔁 - 🏈 🔊	- 🔍 - 🧶 Σ - 2 + 3 + 🛄 🐗 7	5% 👻 🤇	🖉 📘 🗄 Arial		• 12 •	BIU		-a- \$	% ,	00. 00		🗄 🗕 🖄	- <u>A</u> -				
Alt Alt <td>: 12</td> <td>1 80 80 CI 😘 XI I</td> <td>38 38</td> <td>a 💼 l 💖 Reply with</td> <td>Changes End Review</td> <td></td> <td></td> <td></td> <td>And And</td> <td></td>	: 12	1 80 80 CI 😘 XI I	38 38	a 💼 l 💖 Reply with	Changes End Review				And And												
A. B. th< td=""><td>-</td><td></td><td></td><td>a 🖉 (1.0001) 1110</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	-			a 🖉 (1.0001) 1110																	
No. No. <td></td> <td></td> <td>r 18</td> <td></td>			r 18																		
MCCB Selective Coordination Combinations — Ter MCCB Selective Coordination Combinations — Ter MCCB Selective Coordination Combinations — Ter Mainter Ter Mainter Mainter <td></td> <td>A B</td> <td>C C</td> <td>D</td> <td>E</td> <td>Z</td> <td>AA</td> <td>AB</td> <td>AC</td> <td>AD</td> <td>AE</td> <td>AF</td> <td>AG</td> <td>AH</td> <td>Al</td> <td>AJ</td> <td>AK</td> <td>AL</td> <td>AM</td> <td>AN</td> <td>AO 🔨</td>		A B	C C	D	E	Z	AA	AB	AC	AD	AE	AF	AG	AH	Al	AJ	AK	AL	AM	AN	AO 🔨
2 Upstream Up	1	MCCB Selec	ctive Co	ordination	Combinations — Te																
Image: state Image: state<	2	\langle								•											
Uptor Ref Uptor Ref <t< td=""><td></td><td>\backslash</td><td></td><td></td><td></td><td></td><td>10 10</td><td></td><td></td><td></td><td>0.0.0</td><td></td><td></td><td>0:0:</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td></t<>		\backslash					10 10				0.0.0			0:0:						1	
Image: Sector								-									• •				
Breaker Domininam Die Breaker Funly: Die Australia			Upstream								Entit				衙门						
Note Note <th< td=""><td></td><td></td><td>Breaker</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			Breaker																		
Image: constraining range Provide range											(illingen)			(ataz u							
Image: Sub-State Family - by Type Trip Unit	2		\backslash					6.			0:0:0			10:01			· · · ·		A Frame Pres		
Image: constraining function in the constrainin the constraining function in the constraining function in the	4		$\langle \rangle$		Broaker Family - >	LD	LD	LD	LD	LHH	LHH	LHH	LG	LG 600 Ampe	LG	LG	NHH	N	N	N	N
1 Digiting Prixes Trig Lunk+> -	5		$\langle \rangle$		Type Trip Unit ->	T/M	T/M	T/M	ETU	T/M	T/M	T/M	ETU	ETU	ETU	T/M	ETU	ETU	ETU	ETU	ETI
Opwinstream	6		/		Digitrip RMS Trip Unit ->	1	1 	-	310	-		-	310+	310+	310+	(<u></u>)	310	310	310	310	<u>31C</u>
Vigue Vigue <th< td=""><td></td><td></td><td></td><td>\backslash</td><td>Ontim Trin Unit - ></td><td></td><td></td><td></td><td>550, 1050</td><td></td><td>17</td><td></td><td>1. <u></u>1.</td><td></td><td></td><td></td><td></td><td>550, 1050</td><td>550, 1050</td><td>550, 1050</td><td>550, 1(</td></th<>				\backslash	Ontim Trin Unit - >				550, 1050		1 7		1. <u></u> 1.					550, 1050	550, 1050	550, 1050	550, 1(
Image: Braker Minimum Trip (Pug/Trip) -> 300.4 600.4 600.4 500.4	7				Optim The One ->		50 Methode 1946	TOWN NUMBER	2004 (Ontim)	1		NONOMINE	(13-32-4-17-45)	narester e co	N3510040	10/2419/2023	Constantino - 10	1000	1000	N2 94544 19 M	
Bownstream Maximum Trg (rame)-> 300A 300A 300A 300A 400A 400A 500A td>8</td> <td></td> <td></td> <td>$\overline{\}$</td> <td>Minimum Trip (Plug/Trip) -></td> <td>300A</td> <td>400A</td> <td>600A</td> <td>300A (Digi)</td> <td>125A</td> <td>175A</td> <td>225A</td> <td>100A</td> <td>160A</td> <td>250A</td> <td>600A</td> <td>150A</td> <td>400A</td> <td>400A</td> <td>400A</td> <td>600.</td>	8			$\overline{\}$	Minimum Trip (Plug/Trip) ->	300A	400A	600A	300A (Digi)	125A	175A	225A	100A	160A	250A	600A	150A	400A	400A	400A	600.
Image: Construction	9	Downstrean Breaker	n	\sim	Maximum Trip (Frame) ->	350A	500A	600A 4 Swibd —	600A	150A	200A	400A	250A	400A	4 Swhd	600A 4 Swhd	350A	400A	600A	4 Swhd	
Image: Sub-Feed > Im	11			$\overline{\}$	Pow-R-Line : Branch ->	•	4	Swbd –		-	4.Swbd		•	- 4.Sv	wbd –	+,5₩bu	4.Swbd		— 4.S	wbd -	
21 Family (KDB, KD, CRUD, CHKD,	12	↓ ↓			PowR-Line : Sub-Feed ->			. <u></u>								1		-			
Pow-R-Line Panelboard / Swid Min Branch Sub-Feed 20	123	K Family (KDB, KD, CH	KD, HKD, CHKE	D, KDC)																	
Main Branch Sub-Feed 200 - 4,5,4xdd - - 37 10 10 - 5 10 35 42 10 - - 20 20 22 </td <td>124</td> <td></td> <td>1227</td> <td>Pow-R-Line F</td> <td>Panelboard / Swbd</td> <td></td>	124		1227	Pow-R-Line F	Panelboard / Swbd																
100 -	125	100	Main	Branch 4 Swedd	Sub-Feed	4.2	4.2	10	10		, ,	10	25	4.0	10		1				
Image 4001 123,23,23,24 4,5%dd 13,29,39,3E - - 10 - 10 - - 10 - 10 - 10 - 10 - 10 10 - - 10 </td <td>125</td> <td>200</td> <td></td> <td>4,Swbd</td> <td></td> <td>4.2</td> <td>× 3.7</td> <td>10</td> <td>10</td> <td></td> <td></td> <td>10</td> <td></td> <td>3.7</td> <td>10</td> <td>_</td> <td></td> <td>18</td> <td>18</td> <td>18</td> <td>18</td>	125	200		4,Swbd		4.2	× 3.7	10	10			10		3.7	10	_		18	18	18	18
Vertice Powr-R-Line Panelboard / Swbd 101 Main Branch Sub-Feed 102 900 3a,4 4,5wdd - - 6.0 6.0 - - - 6.0 - - - 6.0 - - - 6.0 - - - 6.0 - - - 6.0 - - - 6.0 - - - 6.0 - - - 6.0 - - - 6.0 - - - 6.0 - - - 6.0 - - - 6.0 - - - 6.0 - - - 6.0 - - - 6.0 - - - 6.0 - - - 6.0 - - - 0 18	128	400	1a,2a,3a,3E,4	4,Swbd	1a,2a,3a,3E	-		10	10	<u> </u>	_	<u></u>	_		10	<u></u>		-	_	18	<u> </u>
Pow-H-Line Panelboard / Swbd Main Branch Sub-Feed 183 400 3a,4 4, Swbd - - 6.0 6.0 - - - 6.0 - - - 18	129	L Family (LDB, LD, CLI	D, HLD, CHLD,	LDC, CLDC)																	
Image: Normal bialter John bialter	130		Main	Pow-R-Line I	Panelboard / Swbd	5															
133 400 3a,4 4,5wbd	132	300	3a 4	4 Swbd	Sub-reed		100	60	60			<u></u>			6.0	022			18	18	18
134 600 3a,4 4,Swbd - - - - - - - - 18 135 LG Family (LGE, LGS, LGH, LGC) - - - - - - - - - - 18 136 Main Branch Sub-Feed - - - - 6.0 - - - 10 18 18 18 136 250 - 4,Swbd - - - 6.0 6.0 - - 10 18 </td <td>133</td> <td>400</td> <td>3a,4</td> <td>4,Swbd</td> <td></td> <td></td> <td></td> <td>6.0</td> <td>6.0</td> <td>-</td> <td></td> <td></td> <td></td> <td>- 1</td> <td>6.0</td> <td>—</td> <td></td> <td></td> <td>_ '</td> <td>18</td> <td>18</td>	133	400	3a,4	4,Swbd				6.0	6.0	-				- 1	6.0	—			_ '	18	18
ISS LGF, LGC, LGF, LGC, Main Branch Sub-Feed 138 250 - 4,Swbd - - 6.0 - - 10 18 18 18 139 400 - 4,Swbd - - 6.0 - - - 6.0 - - 10 18 18 18 139 400 - 4,Swbd - - - 6.0 - - - 6.0 - - - 10 18 18 18 18 140 400 - 4,Swbd - - - - - - - 10 18 18 18 18 140 400 - 4,Swbd - - - - - - 10 18 18 18 146 600 4,Swbd - - - - - - 25 25 25 25 25 25 25 25 25 25 </td <td>134</td> <td>600</td> <td>3a,4</td> <td>4,Swbd</td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td>\rightarrow</td> <td>·</td> <td>-</td> <td>-</td> <td>-</td> <td>18</td>	134	600	3a,4	4,Swbd			-		-		-		-	-		\rightarrow	·	-	-	-	18
Pow-R-Line Panelboard / Swbd 187 Main Branch Sub-Feed 188 400 - 4,Swbd - - 6.0 6.0 - - 10 18 18 18 189 400 - 4,Swbd - - 6.0 6.0 - - - 10 18 18 18 180 600 4 4,Swbd - - - 6.0 - - - - 10 18 18 18 141 LG Current Limiting Family - - - - - - - - - 18 18 141 LG Current Limiting Family - - - - - - - 25 25 145 400 - - - - - - - - 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 <td< td=""><td>135</td><td>LG Family (LGE, LGS, I</td><td>.GH, LGC)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	135	LG Family (LGE, LGS, I	.GH, LGC)																		
138 250 - 4,Swbd - - - 6.0 6.0 - - - 10 18 18 18 139 200 - 4,Swbd - - - 6.0 - - - 10 18 18 18 139 400 - 4,Swbd - - - 6.0 6.0 - - - 10 18 18 18 140 600 4 4,Swbd -	136		Main	Pow-R-Line I	Panelboard / Swbd																
133 400 - 4.5xbd - - - 6.0 - - - - 6.0 - - - - 2.5 2.5 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	138	250	Ivialiti	4 Swhd				60	60		<u></u>	2	-		6.0			10	18	18	18
H0 600 4 4,Swbd - - - - - - - 18 H1 LG Current Limiting Family Pow-R-Line Panelboard / Swbd - - - - - - - 18 H2 Pow-R-Line Panelboard / Swbd Main Branch Sub-Feed - 18 H2 Main Branch Sub-Feed - <th< td=""><td>139</td><td>400</td><td>1. <u></u></td><td>4,Swbd</td><td></td><td></td><td>_</td><td>6.0</td><td>6.0</td><td></td><td>1776</td><td></td><td></td><td>_ '</td><td>6.0</td><td></td><td></td><td>1</td><td>_ '</td><td>18</td><td>18</td></th<>	139	400	1. <u></u>	4,Swbd			_	6.0	6.0		1 7 76			_ '	6.0			1	_ '	18	18
Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed Initial Concentration of Sub-Feed	140	600	4	4,Swbd				-	1000	-					-	-					1 8
H2 Pow-R-Line Panelboard / Swbd H3 Main Branch Sub-Feed 145 400 - 4, Swbd - - 6 6 - - 6 - - - 25 25 146 400 - 4, Swbd - - 6 6 - - - 25 25 146 4, Swbd - - - - - 6 - - - 25 25 146 4, Swbd - - - - - - 25 25 146 4, Swbd - - - - - - - 25 25 16 4, Swbd - - - - - - 25 25 Ready	141	LG Current Limiting Fa	mily																		
Has Diamen Sub-reeq 400 - 4,Swbd - - 6 6 - - 6 - - 25 25 146 400 4,Swbd - - 6 6 - - - 25 25 146 600 4 4,Swbd - - - - - - 25 25 146 600 4 4,Swbd - - - - - - 25 25 146 4 5 0.1 Seconds / - - - - 25 25 Ready	142		M-:	Pow-R-Line P	raneipoard / Swbd																
	14.5	400	Iviain	4 Swhd	Sub-Feed			6	6						6		í			25	25
	146	600	4	4,Swbd				-	_		-	<u>9</u>					<u> </u>		-		25
	K	↓ ► ► \ 100% Sel	ective / 0.1	Seconds /							<						Juli				>
	Rea	dv	Λ	,						-											
		etart 0	a * 🗖 21		🖣 8 A 👻 🔞 Bid 🔄 🛅 2 M 👻 🕅	4N 🖌 🖪	PN 💧	SK 🗾		at Sear	ch Desktop						2		H .Om		3:43 PM

Simplified One-Line – Device Selection Continued

	Microsoft Excel -	Select	ive Coordina	tion Tables R3 - 4-1-201	1.xls														
1]Eile Edit ⊻iew Inser	t F <u>o</u> rmat	<u>T</u> ools <u>D</u> ata <u>W</u> ind	łow <u>H</u> elp Ado <u>b</u> e PDF												Туре	a question for	help 🔽 🗕	₽ ×
1) 🐸 🖬 🖪 🖨 🖪 🖪	19 13	X 🗅 🖺 🗸 📝 🔊	- C - 👷 Σ - Δ↓ 👬 🛄 🦓 75	5% 👻 🕜	Arial			• 12 •	BIU	E E 3	-1- \$ %	• •.0 .00 •.€ 00.	律 律 E	🗄 - 🖄 - 🗛				
1	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6	h 👜 🕅 Reply with	Changes End Review															
: 🖷	1 1 17																		
- 6	Al 127	£ 18																	
1 - 1	A B	C C	D	E	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AZ B.	A BB	BC BI	D 🔨
1	MCCB Select	ive Co	ordination	Combinations — Tes															
2	/									15									
3		Upstream Breaker			NFarme Breaker		N-Frame B	and the second sec				Frame Brake							
4		$\langle \rangle$		Breaker Family ->	NHH	N	N	N	N	R	R	R	R	R	R				
5		\sim		Type Trip Unit ->	210 310	310	310	310	310	310	ETU 310	210 310	ETU 310	310	210 310				
		/		Digitrip RMS Trip Unit ->		550.	550.			510, 610,	510, 610,	510, 610,	510, 610,	510, 610,	510, 610,				
7			\mathbf{X}	Optim Trip Unit ->	(<u>1</u>	1050	1050	550, 1050	0 550, 1050	810, 910, 1050	810, 910, 1050	810, 910, 1050	810, 910, 1050	810, 910, 1050	810, 910, 1050				
8				Minimum Trip (Plug/Trip) ->	150A	400A	400A	400A	600A	800A	800A	800A	800A	1000A	1200A				
9	Downstream		$\overline{\}$	Maximum Trip (Frame) ->	350A	400A	600A	800A	1200A	800A	1000A	1200A	1600A	2000A	2500A				
10	Breaker		/	Pow-R-Line : Main - >	4			4,Swbd	4,Swbd	•		<u> </u>	vbd ——						
11	Ļ		\backslash	Pow-R-Line : Branch ->	4,Swbd	*	4	Swbd -				<u> </u>	vbd ——		•	-			
153	N Family (ND, CND, HND,	CHND, NDC	C. CNDC. NGS. NGH.	NGC)															-
154			Pow-R-Line P	anelboard / Swbd												1			
155		Main	Branch	Sub-Feed					-		<u>.</u>		<u>.</u>		<u>.</u>				
156	400	()	4,Swbd		1.000	12-24		10	12	16	16	16	16	22	25				
157	800	4.Swbd	4,5wbd				_	0	12	<u> (* 14</u>			16	22	25				
159	1200	4,Swbd	4,Swbd	_	1,5-1			12		0 1 - 1	1,5			18	* 18				
160	NHH Family																		
161		Main	Pow-R-Line P Branch	aneiboard / Swbd															=
163	350	4	4,Swbd	Cupil Cou		-		-	12	16	16	16	16	22	25	1			
164 165 166 167 168 169 170 171 172 173 174																			
175																			*
K	♦ ► ► ► 100% Select	tive / 0.1	Seconds /																>
Rea	dy	×					h. eu			Dimmer L	Dealster								
1	start 🛛 🖉 🖾 🗖	(2	1. 🔻 🙋 2 🕅 👻 🛃	🚽 8 A 🔻 🥵 Bid 🗀 2 W 👻 💌	4 M 👻 🛅 F	2N 🤮	SK	8 3 M	Eat	Search	шесктор							🗞 🎯 8:52	IPM

Simplified One-Line With Total Selective Coordination Up to the Generator

Simplified One-Line – Equipment Costs – Selectively Coordinated System

Simplified One-Line – Flatten the System

Total Selective Coordination Summary

- Flatten the system
- Broaden your ideas on transformer protection
- Check ATS withstand ratings with chosen breakers
- Tables represent a single manufacturer's equipment

Total Selective Coordination Summary

- Fusible Devices
 - Especially with high fault currents
 - New fusible panelboards available
 - Physical sizes for fusible equipment is typically larger than breaker designs

Total Selective Coordination Summary

- Can't I just put in my specs that the switchgear manufacturer must provide a selectively coordinated system?
- Yes, but please don't!
 - Our salesmen won't necessarily know which circuits need to be coordinated
 - Cable sizes may need to be increased, depending on which breakers are required
 - ATS sizes may need to be increased not in our package
 - Generator breaker sizes may need to increase not in our package
 - Distribution equipment size may increase and no longer fit in the room
 - Who pays for all of the above?

Coordination at 0.01 and 0.1 Seconds

- Here's our original equipment (downstream of the ATS) selected without selective coordination in mind
- Do we coordinate at the 0.01 level?
- How about at 0.1 seconds?

Coordination at 0.01 and 0.1 Seconds

 But we have a little bit of work to do upstream of the ATS on the Generator Side.

Coordination at 0.1 Seconds

- We can make one small change and get coordination at 0.1 second – change the ATS feeder to an electronic trip.
- Total adder from our original \$11.5K cost estimate - <\$500, 4% adder.

Emergency Downstream of ATS.tcc Ref. Voltage: 480V Current in Amps x

Coordination at 0.01 Seconds

- To achieve coordination to 0.01 seconds above the ATS on the generator side, we have to:
 - Provide an 800AF/400AT electronic trip breaker to feed the ATS
 - Use a Power Circuit Breaker on the Generator
- Cost adder over base case for our equipment: \$1.5K (not including generator breaker)

CURRENT IN AMPERES

Emergency Downstream of ATS.tcc Ref. Voltage: 480V Current in Amps x

Challenge - Enforcement

- How is Selective Coordination Evaluated?
 - Some jurisdictions are looking at curves
 - Some jurisdictions require a stamped letter from the engineer of record
 - In some jurisdictions, it has yet to be defined

Challenge - Enforcement

- Breaker Curves
 - No standardized method for representing time current curves

CURRENT IN AMPERES

QUICKLAG 3-Pole Circuit Breakers, 15-100 Amperes CURRENT IN PERCENT OF DREAMER TRIP UNIT RA 5 Ē 8 ≂ 88 ₽ Circuit Breaker Time/Current Curves QUICKLAG 3-Pole Circuit Breakers, 15-100 QUICKLAG* 3-Pole Circuit Breakers, 15-100 Amperes For application and coordination purposes only. Based on 40°C ambient, cold start. Connected with four (4) feet of rated wire (80/75°C) per terminal. Tested in open air with current in all poles. 5,000 **BAB Trip Curve** 1.000 Breaker Ratings (UL Listed) Breaker Maximum Continuous Interrupting Capacity RMS Symmetrical Amperes (M) 2,000 Type ≻Fole Volts Ac (60 Hz) Amperes HOP, QC, BAB QCR, QCP QPHW, QBHW, QCHW QHPW, QHCW, HBAW 15-100 15-30 15-100 15-20 240 240 240 240 10 10 22 65 Continuous Amperes Instantaneous Trip Range, Amperes 200-400 300-500 450-550 800-1200 15-20 25-40 45-60 70-100 Single-pole text data at 25°C based on NEMA procedures for verifying performance of molded case circuit breakers. ТП (50-100 Amp) Maximum Single-Pole Trip Times at 25°C () Maximum Minimum +++++++++ 111 1 É LÉTÉ L Ð - 10 пп Maximum Interrupting Time 1 122 12 П пп . . Interrupting Rating (See Tabulation Above) .01 Sec нін 60 .87 - 14 Ш пп П .005 1005 тп Ш 300 002 302 302 000 000 10000 11000 11000 11000 11000 8 8 8 8 8 8 8 2 Â 8 9000 ğ ž CURRENT INFERCENT OF INFEARER TRIP UNIT RATING. .001 B R 9 8 8 8 20,000 10,000 40,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 CURRENT INPERCENT OF BREAKER TRIP UNIT BATHY.

How is Selective Coordination evaluated?

- The SKM (and all coordination software) plots cut off at 0.01 second
- If coordination to 0.01 seconds is acceptable, be aware that this will be contradicted by our 100% Selective Coordination Tables

Challenge - Design

What about Arc Flash?

- Arc Flash Energy is dependent upon:
 - Actual magnitude of the fault energy
 - *Time that the arc is allowed to propagate*

When we select devices to selectively coordinate, we are purposefully introducing time delays by selecting larger and/or more adjustable devices upstream.

Simplified One-Line – Arc Flash

Challenge – Arc Flash

Techniques for dealing with the Arc Flash Challenge:

- Zone Selective Interlocking
- Arc Flash Reduction Maintenance Switches

Note: 2011 NEC 240.87 mandates one of the above or differential protection when circuit breakers are used without instantaneous protection.

Questions?

© 2010 Eaton Corporation. All rights reserved