The smart grid at work

REAL. SMART. SOLUTIONS

Geopolitical drivers ...

Amount global energy demand is expected to grow by 2030

Source: Army Corp of Engineers

Amount of greenhouse gas emissions for which electricity generation accounts

Source: U.S. Conference of Mayors resolution for Congress

170 times

Cost of generating a KWh versus the cost of saving a KWh through efficiency

Source: Energy Information Administration

Growth drivers ...

Economic competitiveness Energy security Empowerment-Consumer Environmental sustainability

1

Smart Grid Dependencies

Federal	State	Technological	Socio-economic
			•
• Cap and trade	 Rate recovery 	• Standards	 "Green Jobs" creation
 Transmission siting 	• Decoupling	 Interoperability 	• Requires "Green
• Renewable	• Dynamic	 "Common interface 	Investment"
portfolio standard	pricing	model"	 Consumer engagement
 Tax incentives 	 Net metering 	 Cyber-security 	awareness, incentives
		 Smart loads 	

Smart Grid Overview

Smart grid maximizes the potential of our existing infrastructure ...

The integration of <u>two</u> infrastructures

... to provide

Deliver a sustainable energy future through increased efficiency

Embrace more renewables & PHEVs

Informing consumers

Improve reliability

Increase operational productivity

Plan: Build Capability for Today

Goal: Flexibility for Emerging Capabilities . . .

Energy smart cities – FP&L

Miami proposes to lead the nation in energy efficiency with \$200 million smart grid initiative

Scope

- ~1MM customers involved
- Public/private alliance
 - City of Miami
 - Florida Power & Light
 - Software companies
- Creates "green collar" jobs
- Implementation over 2-3 yrs

- Smart Meters
- In-home Energy Mgmt
- Distribution Automation
- Substation Automation
- Enterprise Systems
- Solar / Small Wind Integration
- Advanced Monitoring & Diagnostics

City-scale deployment ... smart grid at work

gridSMARTSM Program

AEP is one of the largest electric utilities in the US, delivering electricity to more than 5 million customers in 11 states
 ➢ gridSMARTSM - a \$150m deployment program in NE Columbus, Ohio

- Columbus ~110k customers
- Deployment over 18 mo (2010-11)
- Benefit Analysis over 24 mo (2011-13)

- AMI / Smart Meters
- In-home Energy Mgmt / Customer Programs
- Distribution Automation
- Coordinated Volt VAR (CVVC)
- Monitoring & Diagnostics
- Transformer Asset Management
- DOE Project Enhancements
- Enterprise System Integration

Transforming the way AEP does business to better serve our customers, improve reliability, reduce costs and lower emissions.

Demand optimization

Reducing peak demand, empowering consumers, deferring infrastructure investment

Distribution optimization

Improving reliability and efficiency, integrating renewables

Asset optimization

Reducing outages and unexpected transformer failure, maximizing life of aging assets

Transmission optimization

Improving reliability and efficiency, integrating centralized renewables, wide area protection

Workforce & engineering optimization

Increasing productivity, cost-effective grid design

Working together to provide customer solutions

for a smarter grid

Distribution optimization

What it is

Distribution automation, enabling advanced applications

Why

Improved reliability and efficiency & integration of distributed energy resources and plug-in cars

Value*

-\$7MM/yr***+ -45K tons of CO2 reduction -Reduce line losses up to 10% -Decrease power purchase up to 3% -Reduce outages by 33% + restore power 30% faster

Distribution Optimization - Tomorrow

Increased grid automation

ENABLES

- Full visibility and control
- Proactive maintenance
- Shared operational data
- Streamlined business processes
- Optimization tools

Operations Processes

Integrated Solution

Engineering Processes

for a smarter grid

Asset optimization

What it is

Prognostics for proactive equipment maintenance

Value*

-\$11MM/yr -~4.5 year ROI -Reduced unexpected transformer failure and unplanned outages up to 80%

*Based on 1 million customers

Why

Reduced outages, reduced asset failure, focused maintenance dollars, maximum asset performance

for a smarter grid

Demand optimization

What it is

Reduce peak and consumption via demand response and management

Why

Avoid additional P&E invest; increase utilization; consumer empowerment

Utility value/MM customers*

\$18MM/yr***43K tons of CO2 reductionRes consumer savings up to 10%

+ \$85/kW-yr peak generation capacity value RPS: Renewable Portfolio Standard *Utility savings are approximate annual savings/M customers **1.5% peak load reduction using CPP

for a smarter grid

Transmission optimization

What it is

Wide area protection, control and integration of centralized renewables

Why

Less energy waste and higher profit margins

Utility value/MM customers*

\$5MM/year Deferral of the capacity upgrade

+ \$85/kW-yr peak generation capacity value
 RPS: Renewable Portfolio Standard
 *Utility savings are approximate annual savings/M customers
 **1.5% peak load reduction using CPP
 ***IVVC with 0.5% CVR peak (only) load reduction

for a smarter grid

Workforce and engineering optimization

What it is

Workforce enabling technologies & system design/modeling

Why

Increased workforce productivity & cost effective grid design

Utility value

Up to 30% reduction in engineering costs

+ \$85/kW-yr peak generation capacity value
 RPS: Renewable Portfolio Standard
 *Utility savings are approximate annual savings/M customers
 **1.5% peak load reduction using CPP
 ***IVVC with 0.5% CVR peak (only) load reduction

WEDO - Smart Grid application suite

It is more than just GIS. It is the integration of the Office, Crew & Customer

1

Smart Grid – a complete view

Generation

Large-Frame Turbines LM Turbines **Energy Finance**

Base Load

Steam Turbines IGCC Cleaner Coal ESBWR Nuclear

CO₂ Capture **BP H2 Joint Venture** Synfuels Technology

T&D

Back Office Geospatial Asset Mgmnt SCADA/EMS/DMS Software **Optimization & Diagnostics** Metering Comm Systems **Communications Security** Work Force Management

Substations

Communications from Office to Sub to Meter

Automation Protection

Network Equipment Physical and Cyber Security Asset Condition Monitoring Engr Procure Const Projects

Infrastructure Transformers - Pwr, Dist, Net

Capacitors Voltage Regulators **Surge Arrestors Busway**

Customer

Comm & Indust 🥒

C&I Smart Meters Water Treatment Automation **Energy Finance**

Residential

Smart Meters Home Area Nets EcoPanel Security Healthcare Entertainment **Consumer Services** Water Systems Load Control **DSM Sensors Smart Appliances**

Ι

Smart Grid Standards

GE Proprietarv © Copyriaht 2009 General Electric Company. All riahts reserved.

Smart Grid Architecture...Security

- Authentication Identity user and system accessing any resource
- Authorization Ensure only authorized users, systems or services can perform actions
- Availability Protect systems from any known security attacks such as DoS
- Confidentiality Encrypt confidential information when exchanged or stored

Security

- Integrity and Non-Repudiation Digitally sign any data that is exchanged within and outside of SG systems
- Auditing and Compliance Create audit logs and monitor for various compliance requirements

Interoperability Architecture

Ι

Smart Grid Architecture

The Smart Grid at Work

Vision, experience, investments and resources powering the brain of the 21st century grid

Ι