IEEE EMC Chapter
Raleigh, NC
June 12, 2007

Mark Heerema
Santa Rosa, CA

Agilent’s EMI Receiver:
- An Historical Perspective
Objectives

- Historical Perspective
- How technical improvements affect throughput
- Technical Point: Bucketization and Pixelation
Legacy Agilent Solutions

HP 8571/72/73/74
Introduced - 1983

- Based on 8566/68
 - First Microprocessor Controlled Spectrum Analyzer
 - Lock and Roll
 - 10 MHz Synthesized Sweeps
 - 2% Span Accuracy
 - Amplitude Accuracy Top Division for Log Display
 - Log Amplifier doesn’t respond correctly to CISPR pulse measurement
 - Need Linear Scale for all final measurements
- 1001 Data Points
- 10 dB Step Size Attenuator
- Added Preselector
 - Required Extensive Calibration
 - Comb Generator for Calibration
- Added CISPR Detectors and Bandwidths
Legacy Agilent Solutions

- Based on 859x
 - Low Cost SA from late 1980s
 - User driven automated alignment
 - Lock and Roll
 - 10 MHz Synthesized Sweeps
 - 2% Span Accuracy
 - Amplitude Accuracy Top Three Divisions for Log Display
 - Log Amplifier doesn’t respond correctly to CISPR pulse measurement
 - Need Linear Scale for all final measurements
- 401 Data Points
- 10 dB Step Size Attenuator
- Built in CISPR detectors and bandwidths
- Optional Tracking Generator

- Added Preselector
 - Required calibration
 - Comb Generator for calibration

8542/46A Introduced - 1994
Agilent PSA Based EMI Measurement Receiver

• Based on PSA
 – Designed for Telecom - 1999
 – Fully Synthesized Sweeps
 • Typical span accuracy 0.02%
 – All Linear Digital IF
 • Log amplitude is a numeric exercise
 • Amplitude accuracy anywhere on screen in either LIN or LOG scale
 – 30 dB more dynamic range than 8566
 – 101 to 8192 Data Points
 – 2 dB Step Size Attenuator
• Added CISPR &MIL Std detectors and bandwidths 2005
• Preselector Added in 2007
 – Family of Sources for User Alignment
 • Leveled Source
 – Source Control
 – EMI Toolset (Cable Losses, Volumetric Site Attenuation)
 • No Comb Generator
PSA Series Standard Features since June 2005

CISPR Defined Detectors and Resolution Bandwidths
• Peak, Quasi-Peak and Average detectors
• 200 Hz, 9 kHz and 120 kHz -6 dB bandwidths
• 1 MHz bandwidth

MIL-STD Resolution Bandwidths
• 10, 100 Hz, 1, 10, 100 kHz, 1 MHz -6 dB bandwidths
PSA Series Standard Features since June 2005

Limit lines
• Standards based limit lines downloadable from www.agilent.com/find/emc
• Set pass/fail curves for spur searches, max output power and more
• 2 sets of limit lines, with margins, dynamic around center frequency and level

Amplitude correction
• 4 sets of AmpCor available (Cable, Antenna, Other, User)
• 200 points per set available
• Programmable freq. vs. amp. curve to calibrate whole system
America’s Market Speaks

• Customers drive Agilent to leverage PSA as EMI solution (2004)
 – Recognized its technical advantages would benefit test time
 • Requested quasi-peak detector at a minimum
 – Required replacement for legacy HP equipment
 – Believed spectrum analyzer superior to receiver mode
• Agilent responds with EMI package (2005)
 – EMI peak, quasi-peak, average detectors (automatic resolution bandwidths)
 – Limit lines and transducer factors
• Customer response (2005)
 – Early adopters see 30% improvement in throughput
 • Customized software
• Agilent gets religion! (2005)
 – Preselector developed for full CISPR16-1-1 compliance
• Customers response (2007)
 – The WORD is out in close-knit community pressing Agilent for immediate solution
 – Unprecedented request for VIP demonstrations
The challenge of measuring Radiated Emissions

Radiated Emissions are difficult because of multiple dimensions!

1. Azimuth (angle)
2. Antenna Height
3. Field Strength
4. Frequency
5. Time

- 41.2563MHz
- 218.120MHz
- 1500.260MHz

IEEE 2007
Raleigh, NC
25 June 2007
Typical EMC Task Flow

<table>
<thead>
<tr>
<th>Percent of test time:</th>
<th>Task Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>Test Preparation</td>
</tr>
<tr>
<td>10%</td>
<td>Initial Scan</td>
</tr>
<tr>
<td>5%</td>
<td>Frequency Filter</td>
</tr>
<tr>
<td>25%</td>
<td>Spatially Maximize</td>
</tr>
<tr>
<td>50%</td>
<td>Troubleshoot</td>
</tr>
<tr>
<td>5%</td>
<td>Audit</td>
</tr>
<tr>
<td>Plus ½ day</td>
<td>Report</td>
</tr>
</tbody>
</table>

IEEE 2007
Raleigh, NC
25 June 2007
Bucketization and Pixelation

Bucketization: Hardware limitation of the number of data points collected.
- If DP = 10 then signal appears @ ~ 250 MHz
- Goal: Each DP = 1/3 IF

Pixelation: Display limitation whereby the number of data points cannot be displayed.
- **PSA**: VGA display.
 - 640 pixels – menu
 - ~550 pixels

Digital Power Analyzer

- **Points**: 8192
- **Gain**: 10 dB
- **Input**: 70.99 dB
- **FFT**: 4 dB
- **Sweep Time**: 78.09 ms
- **Auto**: Man
- **Sweep**: Single / Continuously
- **Gates**: On / Off
- **Gate Setup**: Points 8192

Copyright 2000–2004 Agilent Technologies
Customer Testimonial

“The PSA is like having eight 8566B spectrum analyzers in one.”

Senior EMI Test Engineer

For the same amount of data acquisition:
• 8566B takes 8 scans
• PSA takes 1 scan
Pixelation Solution

Synchronized Zoom Trace (SZT)
Sales Tools and Information Sources

To Learn More . . .

www.agilent.com/find/emc
www.agilent.com/find/N9039A