PCB Power Decoupling Myths Debunked

Bruce Archambeault, PhD
IEEE Fellow
IBM Distinguished Engineer

barch@us.ibm.com

Conventional Wisdom

- Need a variety of capacitance values to maintain low impedance over frequency range
- Many capacitors of one value is better than many values
- Place capacitors close to ICs as possible
- Location does not matter
- Spread capacitors over entire board

Power Plane Noise Control

What is Capacitance?

$$C = \frac{Q}{V}$$

$$Q = CV$$

- Capacitance is the ability of a structure to hold charge (electrons) for a given voltage
- Amount of charge stored is dependant on the size of the capacitance (and voltage)

Note: Capacitance has no frequency dependence!

High Frequency Capacitors

Myth or Fact?

It's really the inductance that matters!

Capacitance and Inductance

- Capacitance → amount of charge stored
- Inductance
 Speed that the charge can be delivered from capacitor

Decoupling Capacitor Mounting

 Keep as to planes as close to capacitor pads as possible

0603 Size Cap Typical Mounting

0402 Size Cap Typical Mounting

Connection Inductance for Typical Capacitor Configurations Configurations with 10 mils from Capacitor Pad to Via Pad

Distance into board to planes (mils)	0805 typical (148 mils between via barrels)	0603 typical (128 mils between via barrels)	0402 typical (106 mils between via barrels)
10	1.2 nH	1.1 nH	0.9 nH
20	1.8 nH	1.6 nH	1.3 nH
30	2.2 nH	1.9 nH	1.6 nH
40	2.5 nH	2.2 nH	1.9 nH
50	2.8 nH	2.5 nH	2.1 nH
60	3.1 nH	2.7 nH	2.3 nH
70	3.4 nH	3.0 nH	2.6 nH
80	3.6 nH	3.2 nH	2.8 nH
90	3.9 nH	3.5 nH	3.0 nH
100	4.2 nH	3.7 nH	3.2 nH

Connection Inductance for Typical Capacitor Configurations with 50 mils from Capacitor Pad to Via Pad

Distance into board to planes (mils)	0805 (208 mils between via barrels)	0603 (188 mils between via barrels)	0402 (166 mils between via barrels)
10	1.7 nH	1.6 nH	1.4 nH
20	2.5 nH	2.3 nH	2.0 nH
30	3.0 nH	2.8 nH	2.5 nH
40	3.5 nH	3.2 nH	2.8 nH
50	3.9 nH	3.5 nH	3.1 nH
60	4.2 nH	3.9 nH	3.5 nH
70	4.5 nH	4.2 nH	3.7 nH
80	4.9 nH	4.5 nH	4.0 nH
90	5.2 nH	4.7 nH	4.3 nH
100	5.5 nH	5.0 nH	4.6 nH

Via Configuration Can Change Inductance

Comparison of Decoupling Capacitor Via Separation Distance Effects

Via Separation

21.7

10 mils

500

Via separation, mils	Inductance, nH	Impedance @1 GHz, Ohms	
20	0.06	0.41	
40	0.21	1.3	
60	0.36	2.33	
80	0.5	3.1	
100	0.64	4.0	
150	1.0	6.23	
200	1.4	8.5	
300	2.1	12.7	
400	2.75	17.3	

3.5

Example #1 Low Cap Connection Inductance

Example #2 Hi Cap Connection Inductance

Example #3 Lower Cap Connection Inductance

Example #4 High Cap Connection Inductance

Capacitor Connection Inductance Ratio

Power/GND plane spacing, (mils)	via diameter, (mils)	L ₂ (nH)
10	10	0.32
10	13	0.304
10	25	0.27
35	10	1.1
35	13	1.07
35	25	0.95

ſ	62mil brd			L3/L2	L3/L2	L3/L2
	centered	0603		w/extra	w/extra	w/extra
	plane	SMT		100 mil	200 mil	300 mil
ı	spacing,	L3'		trace	trace	trace
	mils	(nH)	L3/L2	length	length	length
	10	1.66	6.75	9.13	11.50	13.88
	35	0.92	1.29	1.98	2.67	3.36

For local decoupling need L3/L2 < 3

Decoupling Must be Analyzed in Different Ways for Different Functions

• EMC

- Resonance big concern
- Requires STEADY-STATE analysis
 - Frequency Domain
- Transfer function analysis
 - Eliminate noise along edge of board due to ASIC/IC located far away

Decoupling Must be Analyzed in Different Ways for Different Functions

- Provide Charge to ASIC/IC
 - Requires time-limited analysis
 - Charge must get to the IC <u>during the time it is</u> <u>needed!</u>
 - Charge will NOT travel from far corners of the board fast enough
 - Local decoupling capacitors dominate

Decoupling Capacitor Mounting

 Keep as to planes as close to capacitor pads as possible

Current in IC During Logic Transitions (CMOS)

Typical PCB Power Delivery

Equivalent Circuit for Power Current Delivery to IC

Power Bus Charging Hierarchy

Traditional Analysis #1

Use impedance of capacitors in parallel

Impedance to IC power/gnd pins

No Effect of Distance Between Capacitors and IC Included!

Traditional Analysis #2

- Calculate loop area Traditional loop Inductance formulas
 - Which loop area? Which size conductor

Over Estimates L and Ignores Distributed Capacitance

More Accurate Model Includes Distributed Capacitance

Distributed Capacitance Schematic

Effect of Distributed Capacitance

- Can NOT be calculated/estimated using traditional capacitance equation – need to use full-wave technique
- Displacement current amplitude changes with position and distance from the source

Sample Parameters for Comparison to Measurements

- Dielectric thickness = 35 mils
- Dielectric constant = 4.5, Loss tan = 0.02
- Copper conductivity = 5.8 e7 S/m

Impedance at Port #1
Single 0.01 uF Capacitor at Various Distances (35mil Dielectric)

Impedance at Port #1
Single 0.01 uF Capacitor at Various Distances (10mil Dielectric)

Effect of Capacitor Value??

- Need enough charge to supply need
- Depends on connection inductance

Charge Depletion

- IC draws charge from planes
- Capacitors will re-charge planes
 - Location does matter!

Model for Plane Recharge Investigations

Charge Between Planes vs. Charge Drawn by IC

Board total charge : C*V = 3.5nF*3.3V = 11nC

Pulse charge 5A peak : I*dt/2 = (1ns*5A)/2=2.5nC

Charge Depletion vs. capacitor distance

Charge Depletion for Capacitor @ 400 mils for various connection Inductance

Noise Voltage is INDEPENDENT of Amount of Capacitance!

Capacitor Locations and Orientation

- Many myths about decoupling capacitor design
- Proximity between capacitors has been shown to impact capacitors' performance
- Wish to quantify these various effects, not just show which is best
- Current (not voltage) important for decoupling capacitor analysis

What Happens if a 2nd Decoupling Capacitor is placed near the First Capacitor?

44

Second Via Around a circle

$$\frac{\mu d}{4\pi} \ln \left(\frac{(R+r)^2 (d_1+r)^2}{r^3 (d_2+r)} \right) - \frac{\mu d}{4\pi} \frac{\ln^2 \left(\frac{d_1+r}{R+r} \right)}{\ln \left(\frac{d_2+r}{r} \right)}$$

$$= \frac{\mu d}{4\pi} \ln \left(\frac{(R+r)^4}{(2R\sin(\theta/2) + r)r^3} \right)$$

R: distance between Port 1 and Port 2 in mil

r. radius for all ports in mild: thickness of dielectric layer in mil

d1: distance between Port 3 and Port 1 in mil

d2: distance between Port 2 and Port 3 in mil

theta: angle as shown in the figure in degree

Courtesy of Jingook Kim, Jun Fan, Jim Drewniak

Missouri University of Science and Technology

Effective Inductance for Various Distances to Decoupling Capacitor With Second Capacitor (Via) Equal Distance Around Circle Plane Seperation = 35 mil -- Via Diameter = 20 mil

Effective Inductance for Various Distances to Decoupling Capacitor With Second Capacitor (Via) Equal Distance Around Circle Plane Seperation = 5 mil - Via Diameter = 20 mil

47

Understanding Inductance Effects and Proximity

Current Density - simulation

DUT for Experimental Validation (Single Plane pair)

Experimental Validation (Single Plane Pair)

- Even in the case with two shorting vias at opposite sides $(\theta=180^\circ)$, the inductance value is 68.8% of that with one shorting via
- As two shorting vias get closer together, mutual inductance between two shorting vias increases.

$$\frac{\mu d}{4\pi} \ln \left(\frac{(R+r)^4}{(2R\sin(\theta/2) + r)r^3} \right)$$
Equation 51

Observations

- Added via (capacitor) does not lower effective inductance to 50%
 - 70-75% of original single via case
- Thicker dielectric results in higher inductance

Multiple Capacitors

Via Spacing

Distance to Planes	40 mil Spacing (nH)	0402 SMT (nH)	0603 SMT (nH)
(mils)			
10	0.3	0.9	1.1
20	0.5	1.3	1.6
30	0.75	1.6	1.9
40	0.95	1.9	2.2

Possible Configurations

Number of Capacitors

10 Oct 2012

eault. PhD 57

Effective Inductance vs. Number of Capacitors and Plane Pair Depth

Inductance vs. Plane Width

- Current tends to spread to minimize the impedance
- What is the effect of narrow power/ground planes?
- Using PowerPEEC in quasi-static inductance extraction mode
- Plane widths of 10", 5", 2" and 1"
- Distance between planes = 10 mils

Geometry

Table 1 Inductance as a Function of Plane Width

Plane Width	Inductance	
(inches)	(pH)	
10	545	
5	709	
2	1352	
1	2574	

Effect of distance between Capacitor and IC

- Initially used 10" now use 2" and 1"
- Vary plane width as before

Table 2 Inductance as a Function of Plane Width

7-5-38-5-	Inductance	Inductance	Inductance (pH)
Plane Width	(pH)	(pH)	(Distance=1")
(inches)	(Distance=10")	(Distance=2")	
10	545	173	154
5	709	178	156
2	1352	355	163
1	2574	658	240

Current Density

Current Spread Comparison Planes 5" Width

Really Ugly From Actual PCB

10 Oct 2012

66

Conclusions

- Inductance increases rapidly as plane width decreases
- Impact of plane width not as severe when capacitor and IC are close
- Should avoid all long thin power/ground structures

Summary

- Capacitance values should be as large as possible within the package size
- In most cases, IC takes charge from between the plates, capacitors replenish that charge
- Capacitors are better able to provide charge when spread out
- If placed near each other, capacitors should alternate power/ground pins
 - Worst configuration is when capacitors are close together and all pins in the same direction
- When plane pair is deep in PCB stackup, effective inductance is higher

Conventional Wisdom

- Need a variety of capacitance values to maintain low impedance over frequency range
- Many capacitors of one value is better than many values
- Place capacitors close to ICs as possible
- Location does not matter
- Spread capacitors over entire board

Modeling Technique

- Difficult to model many layer PCB with full wave models
- Multi-Via Transition Tool (MVTT)
 - Breaks multiple layers into individual via transitions
 - Cavity resonance technique to find impedance between planes
 - Capacitance calculation for via-to-plane effects
 - Concatenate S-parameters from all individual elements

Breaking the Problem

Via Configurations

