

Introduction of Hybrid Multiscale Simulation Technologies

Bo Zhao Wave Computation Technologies, Inc. March 07, 2013

Contents

- Motivation and Vision
- Field-Circuit Co-Simulation
- Multiscale Simulation
- About the Company

Why Hybrid & Multiscale?

Need Challenge Nature Vision

CAD Tools are Targeting More Practical Applications

Understand the Real Challenge

Small features

- Sharp corners
- Thin wires and surfaces

Multiscale

- From meters to millimeters
- Thousands of small (mm level) units
- Large (m level) platforms
- L-band to U-band (1-60GHz)

Multiphysics

- Liquid or gas (CFD)
- Heat transfer (Thermal)
- RF-Circuit system (MNA)
- THz antennas (Diffusion)
- Solution
 - Breathe the emerging technologies
 - Hybrid multiscale simulation engine

A Brief Review of Popular Transient Techniques

- FDTD Finite Difference
- FETD Finite Element
- SETD Spectral Element
- DGTD Discontinuous Galerkin
- SPICE Simulation Program with Integrated Circuit Emphasis

NextGen Simulator

The thing is:

For multi-scale, multiapplication problems, is hybrid technique simply putting things together?

- Single Algorithm, Multi Physics
 - FEM solvers
 - Mechanics, CFD, CEM
- Single Physics, Multi Algorithms
 - Multiscale EM problems
 - Hybrid time-domain solvers
 - Hybrid freq-domain solvers
- Multi Algorithms, Multi Physics
 - Hybrid FD, FE, FV
 - Hybrid DE, IE
 - Hybrid TD, FD
- Multi Process
 - Hardware computing (FPGA/CPLD)
 - Parallel computing (MPI/GPU/Multithreading)

Field-Circuit Co-Simulation

Key Techniques Applications

Background

Modern Circuit Systems

- Multifunctional
- High operating frequency
- Large integration scale

- Complex material and device
 - Equivalent circuit modeling is limited
- High frequency
 - EM effects
- Small distance
 - Interference

Circuit Solver – SPICE

- Modified Nodal Analysis (MNA)
 - General analysis method used to compute nodal voltages and branch currents of a lumped electronic circuit network
 - Graph Theory
 - Circuit is represented via a graph
 - Branches of the graph are circuit elements
 - Every branch is bound by two nodes
 - Nodes form the connectivity of branches
 - > 1 reference node (typically ground)
 - Every node assigned a voltage
 - Every branch assigned a current

MNA

DOFs

- Node voltages
- Branch currents of:
 - · Voltage sources and inductors
- Linear system of equations
 - Kirchoff's current law (KCL) at every non reference node:
 - KVL about all branches supporting a voltage source

$$\sum_{i=1}^{N_a} I_i = 0$$

$$\sum_{i=1}^{n} V_i = 0$$

 N_{k}

- MNA for general circuit
 - Reactive elements (L & C)
 - Non-linear elements

$$\begin{pmatrix} \mathbf{X} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \dot{\mathbf{x}}_{sp} \\ \dot{\mathbf{i}}_{v} \end{pmatrix} + \begin{pmatrix} \mathbf{Y} & \mathbf{B}^{T} \\ \mathbf{B} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{sp} \\ \mathbf{i}_{v} \end{pmatrix} + \begin{pmatrix} \mathbf{i}(\mathbf{x}_{sp}) \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} -\mathbf{i}_{s} \\ \mathbf{v}_{s} \end{pmatrix}$$

Example

MNA

Linear System

$$\begin{pmatrix} \frac{1}{R_{1}} & -\frac{1}{R_{1}} & 0 & 1 & 0 \\ -\frac{1}{R_{1}} & \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} & -\frac{1}{R_{3}} & 0 & 0 \\ 0 & -\frac{1}{R_{3}} & \frac{1}{R_{3}} & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} V_{1} \\ V_{2} \\ V_{3} \\ I_{v_{s1}} \\ I_{v_{s2}} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ V_{s_{1}} \\ V_{s_{2}} \end{pmatrix} \implies \begin{pmatrix} \mathbf{Y} & \mathbf{B}^{T} \\ \mathbf{B} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{sp} \\ \mathbf{i}_{v} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{v}_{s} \end{pmatrix}$$

SOCIETY

Field-Circuit Port (Cont'd)

An interface that handles the data exchanging between two solvers

Circuit Port

 Convert the local E-field into a circuit voltage and couple the circuit current back into EM solver as a equivalent "J" current source.

Quasi-Static Approximations

- E-field is conservative within the port region
- Line integration of the field is assumed to be independent of the path
- The feed-back current is evenly distributed through the port region

Bo Zhao, Young, J.C, Gedney, S.D "SPICE Lumped Circuit Subcell Model for the Discontinuous Galerkin Finite-Element Time-Domain Method," *Microwave Theory and Techniques, IEEE Transactions on*, vol.60, no.9, pp.2684-2692, Sept. 2012

Field-Circuit Port

 $V \approx -\int_{L_c} \vec{E} \cdot \hat{p} dl$

 $\vec{J}_{C} = \hat{p}I$

 $V \approx -\frac{1}{W} \int_{S_c} \vec{E} \cdot \hat{p} ds$

 $\vec{J}_C = \hat{p} \frac{I}{W}$

 $V \approx -\frac{1}{A} \int_{V_c} \vec{E} \cdot \hat{p} dv$

 $\vec{J}_C = \hat{p} \frac{I}{A}$

Crosstalk Analysis of an IC Package

- IC package
- Simulated by Wavenology EM using a quadcore PC. Takes around 10 hours and uses 4GB memory
- The sink in S11 indicates a resonance, and it is revealed in the surface current snapshot

entropy -0.0
-0.1
-0.2
-0.3
-0.4

-0.0e+000

1.0e-010

2.0e-010

Time (s)

3.0e-010

Ambient Power Collector

End-to-End Simulation of Antenna Systems

Solution for Phased Array Design

The system contains 32 independent circuits. Each circuit contains 4 capacitors, 2 resistors and two digital controlling switches. The system contains 53 microstrips and two kinds of subtrates

Full-Wave Non-Linear Analysis

Parametric Upconverter

- 50 Ohm lumped port
- Varactor diode SMV1231
- 0.7GHz sinusoid source signal
- Power sweeping
 - 0.01, 0.1, 0.5 and 1V.
- Cut-off effect in transient signal
- Harmonics in spectrum

etic Field (A/m)

Beyond X-Parameters

Parametric Amplifier

- 4GHz, 5GHz sinusoid signals are mixed.
- f_down=1GHz, f_up = 9GHz
- Wideband BHW signal also applied. Nonlinear effects completely expanded the spectrum outside the input spectrum.

Frequency (GHz)

Antenna Direct Modulation

Modulated input

IEEE

SC

Output at receiver

Steven David Keller, "DESIGN AND DEVELOPMENT OF DIRECTLY-MODULATED ANTENNAS USING HIGH-SPEED SWITCHING DEVICES," Thesis, Dept. of ECE, Duke Univ.

Memristor (M) – Memory Resistor: The Missing Fourth Passive Circuit Element

4 basic variables: v, i, q, φ
3 electrical circuit elements: R, L, C
2 time relationship: v - φ and q – I1

$$M(q(t)) = \frac{d\phi}{dq} = \frac{d\phi/dt}{dq/dt} = \frac{V(t)}{I(t)}$$

Invented by Leon Chua (1971). Produced by HP (2008)

I-V hysteresis

Lin Wang; Mengqing Yuan; Tian Xiao; Joines, W.T.; Liu, Q.H.; , "Broadband Electromagnetic Radiation Modulated by Dual Memristors," *Antennas and Wireless Propagation Letters, IEEE*, vol.10, no., pp.623-626, 2011

omputation

Antenna Direct Modulation with Memristors

Superconducting Devices

Superconducting Quantum Interference Devices (SQUIDs)

- Josephson Junctions (50–100GHz)
- Extremely sensitive magnetic field sensors.
 - Low Noise SQUID Array Amplifiers
 - Ultra-High Resolution SQUID Magnetometers
 - SQUID Sensors for Low Frequency Imaging Applications
 - SQUID Particle and X-ray Detectors
 - SQUID Cryogenic Detector Arrays
 - SQUID Digital Processors
 - B-Field Receiving Antennas

Field-SQUID Co-Simulation

SC

Summary

Field-Circuit Co-Simulation

- Internal Simple Circuit Elements
- Full-Wave SPICE Analysis
 - Equivalent circuit modeling is still powerful
 - » Semiconductor-based devices
 - > Superconductor-based devices
 - > Other novel devices
 - Non-linear effects considered in full-wave analysis
 - Coupling with EM fields is more critical as frequency goes higher and higher

Multiscale Simulation Techniques

Multiscale Concept Review of Challenges and Solutions Applications

Challenge in System-Level RF Design: EMI Reverberation Chamber at 30 GHz (λ =1 cm)

No solvers can simulate such a problem on a workstation

Uniform FDTD would require 40000 X 30000 X 20000 = 24 trillion cells

Multiscale factor: $\frac{\Delta}{\delta} = \frac{1.6}{0.0001} = 16000$ FDTD cell: $\Delta x = 0.04$ mm

Best and Worst Scenarios for FDTD

Best scenario: Clustered fine details

Fine cells are localized

Worst scenario: Spread-out fine details

Fine cells are global

31

Challenges for Conventional Methods

Spatial discretization

- FDTD: too many unknowns due to structured grid
- FETD: inversion or factorization of large mass matrices

Time integration

- Explicit scheme: e.g. Leap-Frog, Ex Ruge Kutta
 - very small Δt due to CFL stability condition too many time steps
- Implicit scheme: e.g. Crank-Nicolson, Im Ruge Kutta
 - inversion or factorization of large matrices large memory and CPU time

Transient DDM within Finite Element Method

Flux Operation

- Central Flux
- Upwind Flux

Domain Interface

- Conformal
- Non-Conformal

Parallel Computing

- MPI/GPU/Multithreading
- Load Balancing

Stylianos Dosopoulos, Bo Zhao, Jin-Fa Lee, Non-conformal and parallel discontinuous Galerkin time domain method for Maxwell's equations: EM analysis of IC packages, Journal of Computational Physics, Volume 238, 1 April 2013, Pages 48-70

(e) Layer 5(BC1)

(f) Layer 6(BC2) (g) Layer 7(BC3)

(h) Layer 8(BASE)

Multiscale Hybrid SETD/FDTD/FETD Method

- Electrically fine structures: lower order tetrahedral FETD
- Electrically coarse structures: higher order hexahedral SETD
- Intermediate structures: boundary conformal FDTD
- Interface between different subdomains: Riemann solver

Local adaptive time integration scheme: Implicit-explicit Runge-Kutta (IMEX-RK)

- Electrically coarse subdomains: explicit Runge-Kutta scheme
- Electrically fine subdomains: implicit Runge-Kutta scheme
- Adjacent explicit and implicit subdomains: IMEX-RK scheme

Large system matrices are divided into several middle sized matrices by the hybrid method

Interconnect package

FDTD grid and SETD/FETD mesh

Jiefu Chen; Tobon, L.E.; Mei Chai; Mix, J.A.; Qing Huo Liu; , "Efficient Implicit–Explicit Time Stepping Scheme With Domain Decomposition for Multiscale Modeling of Layered Structures," *Components, Packaging and Manufacturing Technology, IEEE Transactions on*, vol.1, no.9, pp.1438-1446, Sept. 2011

FDTD grid PPW=40 cells: 511 X 323 X 60 total DoF: > 50 million ⊿t = 3.98 fs nt = 125,628 SETD / FETD mesh PPW=40 44 subdomains total DoF: 152,356 △t = 500 fs nt = 1,000

Numerical results by three methods

	hybrid SETD/FETD	FDTD	m HFSS	
memory (MB)	371	$1,\!627$	1,433	
CPU time (minutes)	13.1	522	319	

(efficiency ratio) hybrid : FDTD = 39

(efficiency ratio) hybrid : HFSS = 24

Spiral Inductor in a Reverberation Chamber (3 GHz)

FDTD Grid Versus SETD/FETD Mesh

(PPW=16 with local refinement) FDTD grid: 473 X 420 X 167 DoF: 199.1 million memory cost: 3.3 GB maximum $\Delta t = 0.137$ ps

(similar discretization as FDTD for fine structures and stirrer) DoF: 1,654,475 Memory cost: 840 MB Δt for IMEXRK = 10 ps

EMMUND I. PRATI, JR. SCHOOL OF ENGINEERING

relative difference between FDTD and SETD/FETD = 8.5 %

Tab. 1: comparison of computational costs

	FDTD	SETD/FETD	gain by SETD/FETD
memory (MB)	3379	840	4.0
CPU time (h)	19	7.2	2.6
		ww	/w.wavenology.com

EMP/EMI of Unmanned Aerial Devices/Vehicles

E field snapshot

H field snapshot

SOCIETY

Capturing the Details

Reveal the EM Interference

H field

Resonating EM field interacting with the circuit board

Current generated from source signal

Current generated from interference signal

Surface current on the circuit board

Reveal the EM Interference (Cont'd)

- Circuit board inside missile cavity
- Clean signal vs. interfered signal

4

5

6

Time (ns)

8

9

-0.004

1

2 3

10

11

Wave Computation Technologies

Other Novel Applications using Hybrid Multiscale Simulator

Summary

Multiscale EM field solver

	FD	FE	SE
Efficiency	5	1	3
Accuracy	1	5	3

DG is the key

- Domain decomposition
 - Geometry decomposition
 - Flux operation
- Adaptive Time Stepping
 - LTS
 - M-EX

About the Company

Profile Products

Company Profile

Overview

- Type of business: Research and development
- Products: Engineering simulation software
- Company Sites: Research Triangle Area, NC
- Number of personnel: 5

History

- Founded in 2005
- 5 Phase-I and 3 Phase-II SBIR Projects
 - Air Force (2), Navy (3), Army (2), NIH (1)
- In Process on 3 projects
 - Navy (Phase-II.5), Department of Energy (pending), NASA (pending)
- Reference:

http://www.sbir.gov/sbirsearch/detail/349368

Commercialized Products

- Wavenology EM (electromagnetics)
 - General purpose transient EM field simulator. CAD tool for design of smart antenna, RF/microwave circuit system and novel devices.
- Wavenology PIC (particle in cell)
 - Designs of EM railguns, accelerators and other particle devices
- Wavenology EL (elastrodynamics).
 - An advanced elastic wave simulator. It focuses on oil exploration with ultrasonic, sonic and seismic waves, with major oil services companies as our clients.

Image Citations

- Page 4: Top left figure is from http://adg.stanford.edu/aa241/design/compaero.html. Bottom middle figure is from http://blog.adw.org/2010/06/is-the-church-a-cruise-ship-or-a-battleship/. Top right figure is from http://shamazkhan.wordpress.com/2011/01/10/agile-beams-active-electronically-scanned-array-radars/. Bottom left figure is from http://www.research/mars/transceiver.html. Top middle figure is from http://www.nebotgear.com.au/Product.aspx/Details/376
- Page 5: Middle left figure is from <u>http://www.eduard.com/store/Eduard/Brassin/Aircraft/1-48/F-16-radar-late-1-48.html</u>. Top left is from <u>http://www.jtl-engineering.nl/package_modeling.html</u>.
- Page 9: Top right figure is from <u>http://www.takshak.org/iframes/circuitdebugging.php</u>, bottom right figure is from <u>http://melab.hanyang.ac.kr/common/read.asp?oper=2&num=7</u>.
- Page 24: Top left figure is from <u>http://hyperphysics.phy-astr.gsu.edu/hbase/solids/squid.html</u>, Bottom left figure is from <u>http://www.supraconductivite.fr/en/index.php?p=applications-</u> <u>squid#applications-squid</u>
- Page 41: Top left figure is from <u>http://www.turbosquid.com/3d-models/3d-hellfire-ii-missle-missile-model/195900</u>

Questions?

