Substation Automation and Smart Grid

John D. McDonald, P.E.
GM, T&D Marketing
IEEE PES Past President
IEEE Division VII Director
IEEE Fellow

The Smart Grid

Current Situation

Current IED Penetration

- A little more than half of existing T&D substations are equipped with IEDs

Current Situation (continued)

IED Level of Integration

- 55% of IED substations have no integration (29% of total subs)
- 45% of IED substations have some integration (24% of total)
Plans for “Retrofit” Substations

- 97% of retrofit T&D substations will have IEDs
- 42% of retrofit T&D substations include IED integration and automation

Plans for New Substations

- 97% of T&D substations will have IEDs
- 85% of T&D substations will include IED integration and automation

Why Needed? Why Now?

- DEREGULATION & COMPETITION
 - Deregulation driving actions of most utilities
 - Major driving forces:
 - Improved power quality and service reliability
 - New energy related services and business areas
 - Lower cost of service
 - Information needed for improved decision making
 - SA: A proactive response to these forces
Why Needed? Why Now?

- **DEVELOPMENT OF IEDs**
 - Rapid development and deployment of Intelligent Electronic Devices (IEDs)
 - Protective relays
 - Meters
 - Equipment condition monitors
 - IEDs have become an integral part of Substation Automation systems
 - Technological developments have made SA systems less expensive and more powerful

Why Needed? Why Now?

- **ENTERPRISE-WIDE INTEREST IN INFORMATION FROM IEDs**
 - “Operational” Data
 - Amps, volts, watts, VARs, fault location, switchgear status
 - “Non-Operational” Data
 - Equipment condition
 - Fault event and power quality data (waveforms)
 - Persons working outside the control room want access for improved decision making

Why Needed? Why Now?

- **IMPLEMENTATION AND ACCEPTANCE OF STANDARDS**
 - Confusion over industry communication standards is diminishing
 - International standards have become reality
 - UCA2 ↔ IEC61850
 - Standards based implementation projects underway at many electric utilities
 - Widespread use of de facto standards for IED communications (DNP3, Modbus, Modbus+)
 - Some use of de jure standards (UCA2/IEC61850)
Construction Cost Savings

• Required functionality bundled in fewer components (21, 50/51, 79, …, metering, etc)
• One IED may replace many E-M devices

Reduction in Physical Complexity
- Less inter-device wiring
- Fewer unique devices to inventory
- Some traditional devices eliminated altogether
Construction Cost Savings

- Relay/control house size (new construction only)
- Design & construction labor and materials

Integration Level Benefits

Integrated Protection Functions

- **Objective:** Incorporate protection functions in the SA System
 - Basic protection units (IEDs) exchange current/voltage data via high speed LAN
 - Relay trip signals exchanged over LAN

Traditional (Electromechanical) Approach
Integrated Protection Functions

- **Objective:** Incorporate protection functions in the SA System
 - Basic protection units (IEDs) exchange current/voltage data via high speed LAN
 - Relay trip signals exchanged over LAN

Integrated IED Approach

Integrated Protection – Breaker Failure

Integrated Protection – Breaker Failure
Integrated Protection – Breaker Failure

GE Substation LAN

Integrated Protection – Breaker Failure

GOOSE Messages

Integrated Protection – Breaker Failure

GE Substation LAN

Integrated Protection – Breaker Failure

GOOSE Messages
Automated Functions

Automatic Load Restoration: Supply Line Sectionalizing

- **Nature of the problem**
 - Distribution substations often tapped off supply line without high side breaker or high side protection
 - Considerable load may be out of service until field crews arrive on scene
- **Objectives**
 - Identify faulted section of supply line
 - Isolate faulted section
 - Restore supply to substations fed off unfaulted section of supply line

Supply Line Sectionalizing
Supply Line Sectionalizing

- Permanent Fault Occurs
- Line Protection Operates
- Line Protection Reports Fault Location

System

11
Automatic Load Restoration:
“Intelligent” Bus Failover

- **Nature of Problem**
 - When a transformer failure occurs, “simple” bus failover scheme transfers load to healthy transformer
 - “Simple” failover scheme may overload healthy transformer, especially during peak load
 - Some schemes have been disabled because of this
 - Substation firm capacity limited by amount of load that can be carried if a transformer fault occurs
Automatic Load Restoration: “Intelligent” Bus Failover

Objectives
- Transfer as much load as possible to 2nd substation transformer
- If necessary, transfer portion of load to alternate substation
- Shed portion of load if necessary

“Intelligent” Bus Failover: How It Works

Transformer Fault Occurs

“Intelligent” Bus Failover: How It Works
“Intelligent” Bus Failover: How It Works

If Necessary

If Necessary

To Adjacent Substation

Restore Load Using Feeder Automation

To Adjacent Substation

Enter Rise Application Functions

Enterprise Application Functions
Disturbance Analysis

Exploit Inherent Capabilities of IEDs
- Sequence of Event reporting
- Digital Fault Recorder (DFR)
- Fault Location

[Diagram showing disturbance data from relay IED to computer engineer's desktop]

Intelligent Alarm Processing

- Prioritize alarm information
- Eliminate duplicate & nuisance alarms
- Route alarm info to appropriate party
- "Expert" alarm processing
 - provides more informative and useful alarm messages

[Diagram showing alarm filter and various alarms]

Power Quality Monitoring

- SA System and IEDs able to detect power quality events and report the following information:
 - Harmonic content of the voltage waveform
 - Total harmonic distortion
 - Oscillographic data (waveforms)

[Diagram showing power quality info from IEDs to computer engineer's desktop]
Real-Time Equipment Rating
– Base equipment ratings on actual conditions rather than conservative assumptions
– Squeeze more capacity out of existing equipment
– Example: Transformer “Hot Spot” Monitoring
 • Monitor the true winding hot spot temperature
 • Derive loadability from the results
 • 5 - 10% additional loading can be achieved

Equipment Condition Monitoring
• Continuous On-line Diagnosis of SS Equipment (HV breakers, Transformers)
 • Main objectives
 – Support reliability centered maintenance
 – Find/fix problems earlier
 – Avoid forced (unscheduled) outages
 – Reduce maintenance costs

Equipment Monitoring Devices
• Dissolved Gas in Oil Monitors/Samples
• Moisture Detectors
• Load Tap Changer Monitors
• Partial Discharge/Acoustic Monitors
• Bushing Monitors
• Circuit Breaker Monitors (GIS and OCB)
• Battery Monitors
• Expert System Analyzers
• Protective Relay IEDs (I2t, Breaker timing)
Equipment Condition Monitoring

- **Role of SA**
 - Monitor specialized sensors
 - Perform "expert system" analysis
 - Inform engineers or dispatchers of possible problems
 - Supply "non-operational" data

Traditional approach:

- Substation
- Maintenance Office
- Telephone
- Maintenance Management System

**SA approach – Use "Non-Operational Data Path:"

- IED
- Radio tower
- Data Concentrator
- Local HMI
- TCP/IP
- Corp WAN
- Server
- Data Warehouse
- Non-Operational Data