Surge Arresters

SIEMENS

Application and Selection

Adria Jones

Functions of Surge Arresters

- □ Mounted in parallel to the transformer/equipment
- □ Handle over voltage surge, clamp it down
- □ Absorb energy from the surge
- Discharge the surge current to the ground
- Protect the transformer / equipment
- □ Dissipate the energy and remain thermally stable
- □ Provide reliable & predictable service, safe performance

Sources of Surges

Fundamentals of Insulation Coordination

Design Transformations

- □ SiC + Porcelain (thru 1978)
- □ MOV + Porcelain (1978 thru 1986)
- □ MOV + Polymer (1986 thru now)

Internal Elements and Housing

□ Porc Vs SR

□ SR Vs EPDM

Silicone Carbide Gapped Arrester

SiC blocks in Porcelain housing with gap structure Design prior to mid 70s Had serious problems of -Moisture Ingress -Unstable Protective Levels -Violent Failures

May 2012

Silicone Housed Surge Arresters - Effect of Hydrophobicity

Different Polymers: Silicone vs. EPDM

Silicone (+++)

Highly Hydrophobic (water-repellent)

- UV-resistant
 - \rightarrow the best pollution & long-term stability

- Non-hydrophobic
- Low UV Rating
 - → poor pollution and long-term stability

SIEMENS

EPDM (- - -)

Refer to Dow Corning R & D Paper

Silicone rubber

RUBBER TECHNOLOGY INTERNATIONAL

for electrical insulators

Jim Goudie Dow Corning Corporation USA

or electric power transmission is done via overhead lines, with issulators providing mechanical support and electrical protection. The two predominant designs are suspension- and post-type, both characterined by angled 'sheds' that direct water off the device and maximize the leakage distance between line and tower. (Leakage distance is the shortest path along the surface of the insulator from conductor to ground.) Ceramic and plass have long been the

tors and ight of the provide the state of th

The market for composite insulators is growing steadily, both in long-rod line applications and hollow core station insulators. Composite designs typically use engineered polymers which offer higher mechanical strength, greater design flexibility, reduced weight, and lower breakage rates than ceramic components. The emerging shift to composites adds new importance to the debate over which polymeric material should be used for the housing. Insulator field experience and extensive, multi-stress lab testing of different elastomer formulations have shown silicone's unique surface behavior to be an advantage in these applications

22

Test data Compare SR against EPDM and PORCELAIN

Recommends SR as the best insulation for Power Systems Applications

Most utilities prefer SR for housings and insulators

Types of Surge Arresters

- □ Station Class
- □ Intermediate Class
- □ Distribution Class (HD, ND, RP)
- □ Transmission Line Arresters (TLA)

IEEE

IEEE Standard for Metal-Oxide Surge Arresters for AC Power Circuits (>1 kV)

IEEE Power Engineering Society

Sponsored by the Surge Protective Devices Committee

IEEE 3 Park Avenue New York, NY 10016-5997, USA

22 March 2006

IEEE Std C62.11**-2005 (Revision of IEEE Std C62.11-1999)

Z

IEEE

IEEE Guide for the Application of Metal-Oxide Surge Arresters for Alternating-Current Systems

IEEE Power & Energy Society

Sponsored by the Surge Protective Devices Committee

IEEE 3 Park Avenue New York, NY 10016-5997, USA

3 July 2009

IEEE Std C62.22[™]-2009 (Revision of IEEE Std C62.22-1997)

TM

Surge Arresters Classification Performance Requirements (Table B.1 of Annex B from IEEE Std C62.11)

Class	Rated (k	voltage V)	Lightning impulse classifying	Switching surge classifying	Minimum high- current short-	Minimum low- current long-	Minimum line	High- current pressure	Low current	
01110000123	Duty cycle	MCOV	current (kA)	current (A)	duration withstand (kA)	duration withstand (A, µs)	capability	relief (kA) ^a	relief (A) ^a	
Station	3-48	2.55-39	10	500	65		Table 11	40-65	400-800	
	54-312	42-245	10	500-1000	65	—	Table 11	40-65	400-800	
	396-564	318-448	15	2000	65	-	Table 11	40-65	400-800	
	576-612	462-485	20	2000	65	19 <u>—1</u> 9	Table 11	40-65	400-800	
Intermediate	3-144	2.55- 115	5	500	65		Table 11	16.1	400-800	
Distribution, heavy duty ^b	3-36	2.55–29	10	_	100	250, 2000			-	
Distribution, normal duty ⁶	3-36	2.55-29	5	—	65	75, 2000	—	_	-	
Distribution, light duty ^b	3-36	2.55-29	5		40	75, 2000				

Table B.1—Surge arrester classification prescribed test requirements

^a Test values for arresters with porcelain tops have not been standardized.

^b Riser pole, liquid-immersed, and deadfront are arrester types, not classifications.

Key Features for Arrester Selection

- □ Protection (IR, TOV, Energy)
- Durability (MOV blocks, Construction, Mechanical strength, Creepage distance, PD level)
- □ Safety (Non-fragmenting design, Moisture proof)

Current Designs

- □ Gapless MOV
- □ Poly Wrapped with Grease or Dry interface
- Poly Cage Directly molded
- Poly Tube Directly molded
- □ Metal Enclosed (GIS)

Porcelain Housed Surge Arresters for High Voltage

May 2012

Silicone Housed Surge Arresters for High Voltage High Strength Cage Design, Directly Molded

Silicone rubber housing Material: LSR directly molded onto the active part

Cage of 8 FRP rods as reinforcement structure

Column of MO resistors totally surrounded by silicone rubber (SR)

Page 19

May 2012

Polymer Housed Surge Arresters for High Voltage - Wrapped Design with Grease Interface

- EPDM housing in multiple units
- •Not directly moulded
- •No mechanical member inside
- Deflects under load -- potential for moisture ingress

© 2009 Siemens Energy, Inc. All rights reserved

SIEMENS

Ploymer Housed Surge Arresters for High Voltage Cantilever Strength Compared

Cantilever Strength (inch -lbs)

	MFR – 1	MFR – 2	MFR - 3
	Directly Molded	Wrapped(*)	Directly Molded
	SR	EPDM	SR
WORKING	24,782	10,000 – 3,000	22,125 – 7,000
ULTIMATE	35,400	20,000 – 5,000	35,400 – 11,500

(*) JOINTS BETWEEN THE RUBBERS – POOR MECHANICALS -- HIGH DEFLECTION

SIEMENS

Silicone Housed Surge Arresters for High Voltage Extra High Strength Tube Design

Silicone Housed Surge Arresters for High Voltage Comparison of Cantilever Strength Compared

Cantilever Strength (inch - lbs)

	MFR - 1	MFR - 2	MFR - 3
	Tube Design SR	Hollow Core SR	Tube Design SR
WORKING	446,000	35,000	168,000
ULTIMATE	637,000	70, 800	240,000

Typical porcelain arresters: Ultimate 150,000 in-lbf Working 60,000 in-lbf

SIEMENS

Directly Molded SR Housed Surge Arresters for Distribution Systems (Completely sealed, one piece construction)

SIEMENS

"Gapped" SR housed Surge Arrester for Distribution Systems

Page 25

Wrapped Design, EPDM Housed Surge Arrester for Distribution Systems

Fibre-glass wrapped around MOV resistor column

Cover plate with grease

Pre-manufactured EPDM-housing pushed over the wrapped core impregnated with grease

Screw used for "sealing" with Top Cap plate

May 2012

Arrester Terms and Definitions

□ Duty Cycle voltage

□ Discharge Voltage

□ Protective Margin

Short circuit / Pressure relief rating
Creepage distance
Cantilever Strength
Grading Ring
Corona Ring

Arresters Ratings Duty Cycle and MCOV (Table 1. of IEEE Std C62.11)

SIEMENS

IEEE Std C62.11-2005 IEEE Standard for Metal-Oxide Surge Arresters for AC Power Circuits (>1 kV)

Duty-cycle voltage (kV rms)	MCOV (kV rms)
3	2.55
6	5.1
9	7.65
10	8.4
12	10.2
15	12.7
18	15.3
21	17
24	19.5
27	22
30	24.4
36	29
39	31.5
45	36.5
48	39
54	42
60	48
72	57
90	70
96	76
108	84
120	98
132	106

Table 1—Arrester ratings^a

Duty-cycle voltage (kV rms)	MCOV (kV rms)
144	115
168	131
172	140
180	144
192	152
228	180
240	190
258	209
264	212
276	220
288	230
294	235
312	245
396	318
420	335
444	353
468	372
492	392
540	428
564	448
576	462
588	470
612	485

^aFor ratings not shown, consult with manufacturer.

Surge Arrester's Application Data Refer to Manufacturers' Catalog

	•	•				Electrica	l Charact	eristics				Ļ	↓	Mechani	cal Chara	cteristics	
Duty cycle voltage	мсоу	TOV Capability ¹⁾	Protect ve level Maximum dis harge voltage							Arrester order number	Creepage distance	Flashover distance	LIW V ³⁾	Height "H"	Weight		
			FOW ²⁾			for 8	20 µs		_	for 45	/90 µs						
[kV]	[kV]	for 0.1 s [kV]	[kV cr]	1.5 kA [kV cr]	3 kA [kV cr]	5 kA [kV cr]	10 kA [kV cr]	20 kA [kV cr]	40 kA [kV cr]	250 A [kV cr]	500 A [kV cr]		[inch]	[inch]	[kV]	[inch]	[lbs]
9	7.65	11.9	24.2	19.0	19.8	20.7	22.0	24.5	27.8	17.2	17.6	3EL2 009-2PC31-4NH5	59.1	16.0	235	19.0	35
10	8.4	13.1	26.4	20.7	21.6	22.6	24.0	26.7	30.3	18.8	19.2	3EL2 010-2PC31-4NH5	59.1	16.0	235	19.0	36
12	10.2	15.9	31.9	25.0	26.1	27.3	29.0	32.2	36.6	22.7	23.2	3EL2 012-2PC31-4NH5	59.1	16.0	235	19.0	36
15	12.7	19.8	39.6	31.0	32.4	33.9	36.0	40.0	45.4	28.1	28.8	3EL2 015-2PC31-4NH5	59.1	16.0	235	19.0	36
18	15.3	23.9	47.3	37.0	38.7	40.5	43.0	47.8	54.2	33.0	34.4	3EL2 018-2PC31-4NH5	59.1	16.0	235	19.0	3/
21	19.5	30.4	63.8	49.9	43.0	54.6	58.0	64.4	73.1	45.3	46.4	3EL2 021-2PC31-4NH5	59.1	16.0	230	19.0	37
27	22	34.3	71.5	55.9	58.5	61.1	65.0	72.2	81.9	50.7	52.0	3EL2 027-2PC31-4NH5	59.1	16.0	235	19.0	38
30	24.4	38.1	79.2	62.0	64.8	67.7	72.0	80.0	90.8	56.2	57.6	3EL2 030-2PC31-4NH5	59.1	16.0	235	19.0	38
36	29.0	45.2	94.6	74.0	77.4	80.9	86.0	95.5	108	67.1	68.8	3EL2 036-2PF31-4NH5	94.4	24.8	365	27.8	47
39	31.5	49.1	103	80.9	84.6	88.4	94.0	104	119	73.4	75.2	3EL2 039-2PF31-4NH5	94.4	24.8	365	27.8	48
45	36.5	56.9	119	92.9	97.2	102	108	120	136	84.3	86.4	3EL2 045-2PF31-4NH5	94.4	24.8	365	27.8	48
48	39	60.8	127	99	104	108	115	128	145	89.7	92.0	3EL2 048-2PF31-4NH5	94.4	24.8	365	27.8	49
54	42	65.5	143	112	117	122	130	144	164	101	104	3EL2 054-2PF31-4NH5	94.4	24.8	365	27.8	50
60	48	74.9	158	124	130	135	144	160	182	112	115	3EL2 060-2PF31-4NH5	94.4	24.8	365	27.8	51
72	57	88.9	190	149	156	163	173	192	218	135	138	3EL2 072-2PJ31-4NH5	151	38.8	571	41.9	65
90	70	109	238	186	194	203	216	240	2/2	169	1/3	3EL2 090-2PJ31-4NH5	151	38.8	571	41.9	68
96	/6	119	253	198	207	216	230	255	290	1/9	184	3EL2 096-2PJ31-4NH5	151	38.8	571	41.9	69
108	88	131	205	223	233	244	259	268	320	202	207	3EL2 106-2PM31-4NH5	179	45.9	676	48.9	//
120	98	157	317	229	259	230	288	320	363	200	213	3EL2 111-2PM31-4NH5	179	45.9	676	48.9	79
132	106	165	349	273	285	298	317	352	400	247	254	3EL2 132-2PO32-4NH5	245	54.7	900	69.4	99
144	115	179	381	298	311	325	346	384	436	270	277	3EL2 144-2PQ32-4NH5	245	63.6	900	69.4	108
168	131	204	443	347	363	379	403	447	508	314	322	3EL2 168-2PJ32-4NH5	301	77.6	900	83.5	132
172	140	218	454	355	372	388	413	459	520	322	330	3EL2 172-2PJ32-4NH5	301	77.6	900	83.5	133
180	144	225	475	372	389	406	432	480	544	337	346	3EL2 180-2PJ32-4NH5	301	77.6	900	83.5	134
192	152	237	507	397	415	433	461	512	581	360	369	3EL2 192-2PJ32-4NH5	301	77.6	900	83.5	137
228	180	281	602	471	492	514	547	607	689	427	438	3EL2 228-2PW32-4NH5	329	84.6	1000	90.5	149
240	190	296	634	495	518	542	576	639	726	449	461	3EL2 240-2PW32-4NH5	357	91.7	1000	97.5	155
258	209	326	652	516	534	558	593	652	712	469	480	3EL2 258-3PW42-4NH5	329	84.6	1000	96.7	153
264	212	331	668	528	546	571	607	668	728	480	492	3EL2 264-3PW42-4NH5	329	84.6	1000	96.7	155
276	220	343	699	553	572	597	635	699	762	502	514	3EL2 276-3PW42-4NH5	329	84.6	1000	96.7	156
288	230	359	728	576	596	622	662	728	794	523	536	3EL2 288-3PM42-4NH5	357	91.7	1100	104	165
294	235	367	744	588	608	636	676	744	811	534	548	3EL2 294-3PM42-4NH5	357	91.7			

Recommeded Installation Points

- **Given Series and Seri**
- **Given Series and Seri**
- usually in the HV-bushing area of transformers
- □ additionally at breakers

Service Conditions Arresters Applications Per IEEE Std. C62.11

Usual Service Conditions :

- Temperature : (-) 40 to (+) 40 degrees C ambient air ; arresters max. 60 C
- □ Altitude 1800 meters (6000 ft.)
- □ 48 62 Hz
- Upright mounting

Unusual Service Conditions :

- □ Higher temperatures
- □ Higher altitude
- Highly contaminated environments
- □ High mechanical , wind, and seismic loads
- Underhung, horizontal mounting

Arrester Selection System Parameters Required

Equipment being protected and its BIL Nominal System Voltage - U_n Maximum System Voltage - $U_m = U_n \times 1.05$ Maximum L – G voltage, i.e. MCOV Grounding Condition (grounded system ?) Expected fault current level **Expected TOV** Expected switching surge energy Pollution level and creepage distance Excessive mechanical loadings (wind, ice, seismic) Application altitude **Temperature range** Mounting – Underhung, horizontal? Cap bank?

Effects of Separation Distance

Page 34 May 2012

230 kV System - 950 kV BIL Station 192 kV Rated Arresters / 152 kV MCOV

Page 35

May 2012

Effects of Lead Length

Page 36

May 2012

230 kV System - 950 kV BIL 192 kV Rated Arresters / 152 kV MCOV

Steepness of voltage wave (S) = $11 \text{ kV}/\mu \text{s}$, per kV MCOV

Z = Surge Impedance = 350Ω

25 ft. long lead

L = Inductance of the lead

 $= 25 ft \times 0.4 \mu H / ft$ $=10\mu H$ $\frac{di}{dt} = \frac{2 \times S}{Z} = \frac{2 \times (11kV / \mu s \times 152)}{350\Omega}$ $=\frac{2\times1672}{4}=9.55kA/\mu s$ 350 Voltage drop due to $= L \times \frac{di}{dt}$ 25 ft. lead length $= 10 \times 9.55$ = 95 .5 kV

Page 37

May 2012

SIEMENS

Arresters Clearances

Arrester Clearance Calculation

- 1. Recommended Clearance Table 5 in Application Guide C62.22
- Quick rough calculation for minimum clearance: Use (20 kA, 8/20 Discharge Voltage – IR), air insulation strength of 500 kV/meter, factor for safety of 1.30 to account for variation in atmospheric conditions and discharge current higher than normal

Minimum
Clearance
$$\begin{aligned}
 = \begin{bmatrix}
 20 & kA \\
 8 / 20 \\
 IR
] \times 1.30
\end{aligned}$$
Divided by Insulation strength of air
$$= \frac{512 \times 1.30}{500}$$

$$= 1.33 M$$

$$= 52 \text{ inches}
\end{aligned}$$

Altitude Correction for Clearance

- IEEE / ANSI standard considers 1800 meters as normal application altitude.
- Insulation strength of air diminishes with higher altitude.
- Allow 1% additional clearance for every 100 meters beyond 1800 meters.

Example: 10,000 ft. altitude ≈3,000 meters

Therefore, $\frac{3000 - 1800}{100} = 12\%$ additional clearance

BIL of Arresters Housing

- 1. Surge Arresters are voltage sensitive devices
- 2. Clamp the over voltage down below the BIL of the equipment
- 3. BIL of the Arresters' housing is irrelevant
- 4. Check insulator withstand capability of the housing (Use paragraph 8.1.2.4 of C62.11 and manufacturer's data sheet).

****Lightning Impulse withstand value must be > 20 kA 8/20 IR x 1.42****

 $= 512 \times 1.42 \begin{bmatrix} \text{Actual} \\ 850 \text{ kV} \end{bmatrix}$

**** Wet power-frequency withstand value > switching impulse discharge voltage x 0.82

$$= 378 \times 0.82 \qquad \begin{bmatrix} Actual \\ 400 \text{ kV} \end{bmatrix}$$

Energy from Switching Surge (Refer Annex G of IEEE Application Guide C62.22)

Switching Surge Energy Calculation

Energy Discharged into the arrester

= Voltage x Current x (Duration of Switching Surge) Time

$$= U_{res} \times \frac{U_L - U_{res}}{Z} \times \frac{2 \times L}{C}$$
 watt - sec. (or Joules)

$$= 0.021 \times MCOV \times \frac{L}{Z} \text{ kJ/kV of MCOV}$$

 $U_{L-G} = \text{Max rms L} - \text{G voltage i.e. MCOV}$ $U_L = \text{Line charging voltage } \approx \left(U_{L-G} \times \sqrt{2}\right) \times 2.6 \approx \left(MCOV \times \sqrt{2}\right) \times 2.6$ $U_{res} = \text{Switching Surge Discharge Voltage } = \left(MCOV \times \sqrt{2}\right) \times 1.64$

I =Switching Surge Current

L = Length of line in km.

Z = Surge Impedance of the line $\approx 350 - 400 \Omega$

C = Speed of light = 300,000 km / sec.

Transmission Line Arresters for Increased

System Reliability

Solution for unshielded or poorly shielded Transmission Lines

SIEMENS

TLA Application – Cross Arm Mounted

TLA Application – Suspended from phase conductor

Routine Factory Tests Per IEEE Std. C62.11

Discharge Voltage Test

On MOV blocks, arrester sections, or complete arresters

Partial Discharge (PD) Test

Very important test, Less than 2 pC preferred

Galing Test

Vacuum decay test method preferred

□ Watt Loss Test @ MCOV x 1.20 to 1.25

{ Diagrams or pictures of test set ups, raw test data , and oscillograms can substitute for pre-shipment inspections and acceptance tests . }

Pressure Relief Testing - - Failure Mode Avoid Potentials of Violent Failures with Porcelain Housing

Page 49

May 2012

© 2009 Si€

SIEMENS

Minimize number of segments per arrester

Preferred

Example left side (Preferred):

2 segments for up to 550 kV system voltage

Example right side (avoid them):

4 units per stack for the same voltage level or arrester with additional insulators for stabilization or multiple segment arrester built up with MV arresters

Minimizing the number of segments per arrester means:

- more stability
 - = higher cantilever strength
- less segments to mount
 - = less installation time / costs
- •better voltage distribution

Multiple-segment arresters are generally not recommended as their electrical and mechanical performance is poor!

Silicone Housed Surge Arresters for High Voltage IEEE 693 of 2005 - Seismic Performance Level Shake Table Test

© 2009 Siemens Energy, Inc. All rights reserved

SIEMENS

Monitoring Devices

3EX5 070 – Arrester Condition Indicator

Display of surge counts

The number of all registered surges higher than a certain level are displayed alternating to the leakage current.

Display of leakage current

Contents of leakage current Possible degradation can be obtained on the long-term measurement of the resistive component.

Field Testing Arresters

- Understanding remaining life of a critical component – IMPORTANT
- Common Methods for Sensing Gapless MOV Arresters
 - 1. Infrared Thermography
 - 2. Leakage Current resistive component
 - 3. Watt Loss
- Surge Counters with Leakage Current Meter
 - -not very effective

Surge Arresters are the Best Insurance for Your Assests

Source: APS

DO NOT ECONOMIZE ON SURGE ARRSTERS !

Page 55

May 2012

© 2009 Siemens Energy, Inc. All rights reserved

SIEMENS

For additional information call me:

Adria D. Jones

Application Engineer Jackson, MS

E-mail: adria.jones@siemens.com

http://www.energy.siemens.com/fi/en/power-transmission/high-voltageproducts/surge-arresters-limiters/

Thank you for your time!

Page 56 M