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Reactive Power Reactive Power 
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Reactive Power 
Management/Compensation

What is Reactive Power Compensation?

• Effectively balancing of capacitive and inductive components of a 
power system to provide sufficient voltage support.

• Static and dynamic reactive power

• Essential for reliable operation of power system 
– prevention of voltage collapse/blackout

Benefits of  Reactive Power Compensation:

• Improves efficiency of power delivery/reduction of losses.
• Improves utilization of transmission assets/transmission capacity.
• Reduces congestion and increases power transfer capability.
• Enhances grid reliability/security.
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Static and Dynamic VAR Support
• Static Reactive Power Devices

– Cannot quickly change the reactive power level as long as the 
voltage level remains constant.

– Reactive power production level drops when the voltage level 
drops.

– Examples include capacitors and inductors.

• Dynamic Reactive Power Devices
– Can quickly change the MVAR level independent of the voltage 

level.
– Reactive power production level increases when the voltage level 

drops.
– Examples include static VAR compensators (SVC), synchronous 

condensers, and generators.



7

Voltage Stability Voltage Stability 
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What is Voltage Instability/Collapse?

• A power system undergoes voltage 
collapse if post-disturbance voltages are 
below “acceptable limits”

• voltage collapse may be due to voltage or angular 
instability

• Main factor causing voltage instability is the 
inability of the power systems to “maintain 
a proper balance of reactive power and 
voltage control”
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Voltage Instability/Collapse
• The driving force for voltage instability is 

usually the load
• The possible outcome of voltage instability:

– loss of loads 
– loss of integrity of the power system

• Voltage stability timeframe:
– transient voltage instability: 0 to 10 secs
– long-term voltage stability:   1 – 10 mins
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Voltage stability causes and analysis
• Causes of voltage instability :

– Increase in loading

– Generators, synchronous condensers, or SVCs reaching reactive
power limits

– Tap-changing transformer action

– Load recovery dynamics

– Tripping of heavily loaded lines, generators
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P-V Curve 
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Q-V Curve 
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Key Concerns

Minimize 
motor 
tripping 

Limit UVLS 
activationVoltage 
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Possible Solutions for Voltage Instability

• Install/Operate Shunt Capacitor Banks 

• Add dynamic Shunt Compensation in the form of 
SVC/STATCOM to mitigate transient voltage dips

• Add Series Compensation on transmission lines in the 
problem area

• Implement UVLS Scheme

• Construct transmission facilities
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Voltage Stability Study for Voltage Stability Study for 
Western RegionWestern Region
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Western Region – Overview

138 kV Tie  Lines

 230 kV Tie  Lines

Generation

Load Center

Woodlands Network

New Caney Network

Conroe Network
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Study Objective
• Assess the nature of the Western Region voltage 

instability problem 
• Analyze and recommend reactive compensation 

measures (size, type, location) to mitigate system 
problems
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Key Concerns
• Transient Problem

– Minimize motor tripping
• Steady State Problem

– Return 138 kV buses 
post contingency to 
voltages above 0.92 pu

• Thermal Issues
– Avoid thermal 

violations
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Load Modeling
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Critical Contingencies Studied
• Lewis Creek Unit 1 out-of-service

• Fault and trip
– China – Jacinto 230 kV line
– Grimes – Crockett 345 kV line
– Lewis Creek Unit 2  
– Oakridge – Tamina 138 kV line
– Jacinto – Peach Creek 138 kV line
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Results
Without motor tripping being simulated

Oakridge - Tamina Fault

Voltage = 0.7 pu

Legend
Grimes
Rivtrin
Navasota
Conroe
Goslin
Oakridge

Voltage 
(pu)
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System recovers to 
healthy voltages

• Criterion for motor trip : Voltage < 0.7 pu for > 20 cycles

Results
With motor tripping being simulated

Oakridge - Tamina Fault

Motors 
Trip

Voltage 
(pu)

Legend
Grimes
Rivtrin
Navasota
Conroe
Goslin
Oakridge
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Solutions Considered
• System reinforcements to mitigate the 

voltage instability with the proposed China-
Porter 230 kV series compensated line 
were:
– SVC
– STATCOM 
– Distributed VAR
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What is a SVC?
• The SVC typically consists of a 

– Coupling Transformer
– TCR (Thyristor Controlled Reactor) 
– TSC (Thyristor Switched Capacitor)
– ACF (AC Filters) 

• TCR continuously controls reactive 
power by varying the current amplitude 
flowing through the reactors

• TSC switches the capacitors on and off 
• AC filters provide fixed reactive power 

and absorb the harmonic current 
generated by TCR

• Output can be asymmetric, e.g. +300 MVAR, -100 MVAR
• TCR+ACF is the most basic configuration of the SVC 
• TCR+TSC+ACF, the more advanced configuration, can be tuned to minimize the 

losses at the most frequent operation point
• Reactive power control is fast 
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What is a STATCOM?

• STATCOM consists of 
– Coupling Transformer
– Inverter Bridge 
– DC capacitor

• Output is always 
symmetric, e.g. ±100 
MVAR

• Reactive power control is fast and continuous from inductive to 
capacitive through the adjustment of the inverter AC voltage output 
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What are Distributed VARs?
• They are smaller size of SVC or STATCOM at 

the distribution level
– DVAR: Distribution level STATCOM
– AVC (Adaptive VAR Compensator): Distribution 

level SVC
• Distributing VAR support where it is needed – closer 

to loads
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Recommendation
• SVC was the most suitable solution for the problem in 

the Western Region
• Reasons

– Total dynamic and steady state VAR requirement for this area is very 
large

– Traditionally SVCs are applied to address voltage problem in large 
area whereas distributed solutions are applied to provide local voltage 
support 

– SVC has a proven track record (> 1,000 installations) – matured 
technology

– SVC is capable of damping power system oscillation
– SVC can be used under light load conditions for voltage regulation, 

thereby avoiding capacitor switching
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Details of SVC Solution

• Full dynamic range required
– SVC must be normally at zero output during 

peak load conditions
• Size 

– Dynamic: 300 MVAR
– Steady State: 210 MVAR

• Location – Porter 138 kV station
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Typical SVC Configuration

LV bus bar

Fixed filter circuit

Thyristor controlled
reactor

Thyristor switched
capacitor

Control

Step-down transformer

HV

LV



30

Porter Static VAR Compensator
(SVC)

• Main Components
– Step Down Transformers
– Capacitors
– Cooling System
– Thyristors

• Switching Logic
– Voltage Control
– Reactive Power Control

• Coordinated Remote Capacitor Switching
– Issues 
– Implementation
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Porter SVC Configuration

SN = 300 MVA, uk = 9.5 %

3AC 60Hz 230kV

3AC 60Hz 15.5kV

CTSC2

LTSC2

TSC 2

V2

VR2

TSC 1

CTSC3

LTSC3

TSC 3

V3 VR3

CTSC1

LTSC1

V1

VR1

= 75 MVAr = 75 MVAr = 150 MVAr

138kV
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SVC Performance 
Dynamic Rating

Jacinto – Peach Creek Fault

VAR output of the SVC

Voltage 
(pu)

Legend
Grimes
Rivtrin
Navasota
Conroe
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SVC Performance 
Steady State Rating 
Two Lewis Creek Units Out

Voltage 
(pu)

VAR output of the SVC

210 MVAR

Legend
Grimes
Rivtrin
Navasota
Conroe
Corrigan
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Switching Steps of the SVC
Operation 
Mode 

    

# TSC   
3 

TSC   
2 

TSC   
1 

Reactive Power (Q) 

8 0 0 0 0 MVAr 

7 0 0 1 75 MVAr 

6 0 1 0 75 MVAr 

5 0 1 1 150 MVAr 

4 1 0 0 150 MVAr 

3 1 0 1 225 MVAr 

2 1 1 0 225 MVAr 

1 1 1 1 300 MVAr 
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External Device Control
Single line diagram of SVC and MSC

Porter 138 kV

as
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Porter

Metro

Conroe

Tamina

Goslin

Oak Ridge

S
V

C

BM TOC
SCADA 

Host

•kV
•CB Status
•Availability

Cap Banks 
to Operate

Coordinated Cap bank Control
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SVC Operation Modes
• Manual Mode or Fixed Susceptance mode 

(FS mode) - Qreg is given by the fixed 
susceptance reference setting FSref

• Automatic Mode 
– Reactive Power control mode (Q mode) -

Adjust the voltage reference (Vref) setpoint to 
maintain the Qreg = Qref

– Voltage mode (V mode) - fast voltage control 
mode that can override the Q-control mode
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SVC Operation
• SVC operates in the automatic mode 
• Vref of the SVC set at 141 kV (1.02 pu)

– This  enables the SVC to dispatch itself so that 
the voltage doesn’t drop much below the Vref 
(remember 2% slope)

• Qref will be a function of the western region 
load
– This will let the SVC switch the externally 

controlled capacitor banks and maintain 
adequate VAr reserve at the SVC
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VACT

VREF

VQSlow Q control
(when enabled)

Qsvc Slope adjustment

Stability 
controller

Gain 
controller

Dead-band 
controller

QSVC

Susceptance 
calculator

Mode 
select

BSVC

V

Simplified Primary Voltage Controller 
Schematic
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SVC Control

• Voltage Control

– Responds to voltage fluctuations
– Fast response, restoring voltage within 3 

cycles
– Employs stability controller
– Unaffected by the QREF setting
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SVC Control

• Q Control
– Used to maintain the dynamic range of the 

SVC and to maintain an efficient operating 
point

– Unaffected by the VREF Setting
– Slow response
– Controls the operating point of the SVC
– Controls the coordinated switching of the 

remote capacitor banks
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Porter SVC
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SVC Panel HMI
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Ninemile SVC
SVC Site

Ninemile Switchyard
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Ninemile SVC

Coupling Transformers
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Ninemile SVC

Thyristor Switched Capacitor Bank
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Ninemile SVC
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Questions?


