Switchgear of the Future

L L L

Presentation & Demonstration of the State of the Art in Switchgear Design

Presented by: James K. Stacy

For: IEEE

Life Is On Schneider

Table of Contents

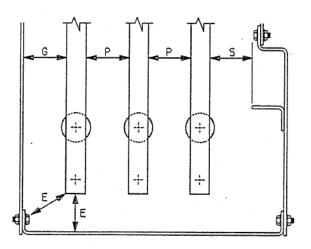
This presentation focuses on medium voltage AC electrical distribution systems with voltages above 1 kV, up to and including 52 kV.

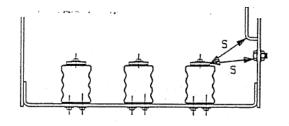
3 **History of MV Switchgear** 5 **MV** Air Insulated Switchgear 7 **MV Gas Insulated Switchgear** 11 Moving to Fixed Mounted Switchgear 14 Shielded Solid Insulated Switchgear

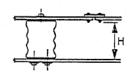
Life Is Or

History of MV Switchgear

Medium Voltage Switchgear Evolution Fixed oil filled circuit breakers were difficult & dangerous to use & maintain Oil filled circuit breakers were put into withdrawable switchgear in order facilitate maintenance but reliability was still an issue. SF6 & Vacuum circuit breakers increased the reliability of MV circuit breaker switchgear in the 1970's. Metal clad today has very little differences compared to metal clad from the 70s. It is large and expensive. 2010 - Todav Solidinsulated Main drivers of 80's - today innovation: Gas-insulated Service continuity • Hybrid 70's - 90's Safety • Vacuum & 50's - 80's Air-insulated Compactness • 30's - 40'sAir-insulated Metal Clad Cost reduction • Air-insulated Metal-enclosed Vacuum & Open switchgear Air & Oil CBs Optimization of trouble shooting Fault prevention


Air Insulated Switchgear

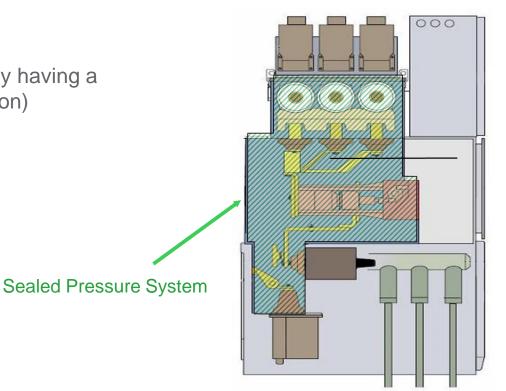



Existing MV Switchgear Technology - AIS

Air Insulated Switchgear

- Very mature technology...so mature, can we do better?
- Uses air as the dielectric...very sensitive to the environment
- Largest of the switchgear types
- Requires most maintenance of the switchgear types

Life Is On


Gas Insulated Switchgear

Existing MV Switchgear Technology - GIS

Gas Insulated Switchgear

- No maintenance in the MV circuit by having a clean electrical atmosphere (Isolation)
 - Particles
 - •Small animals
 - Salt
 - Dusty environment
 - Humidity
- Accidental- touch safe
- Reduced risk of internal arc

Existing MV Switchgear Technology - GIS

Table 1: Overview of failure causes

Causes of failures in air-insulated switchgear	Share of air- insulated switchgear failures	Failure causes not relevant to gas- insulated switchgear
Thermocycling	7%	
Mechanical structure failure	3%	
Mechanical damage from foreign source	7%	\checkmark
Shorting by snakes, birds, rodents, etc.	3%	\checkmark
Malfunction of protective device	10%	
Above normal ambient	3%	
Exposure to chemicals or solvents	3%	\checkmark
Exposure to moisture	30%	\checkmark
Exposure to dust or other contaminants	10%	\checkmark
Exposure to non-electrical fire	7%	
Normal deterioration from age	10%	
Severe weather condition	3%	
Others	4%	

Source: IEEE 493 Gold Book, Annex E, table XVIII, page 479.

>50% of the failures are not relevant High percentage of the remainder reduced:

- Less mechanical efforts
- It is an indoor equipment
- Fixed components reduce the possibilities of "hot points"
- Maintenance is not needed in MV parts

Existing MV Switchgear Technology - GIS

	Common causes of arc flash in AIS	GIS	
Human error	Careless cover or device removal	Fully insulated / only the cable compartment is accessible	
	Dropped tool	Fully insulated / only the cable compartment is accessible	
	Installing cabling or components live	Switch disconnector to ground the section prior maintenance	
	Test instrument misapplied	Integrated test instruments for voltage test / Switch disconnector to ground the section prior maintenance	
	Other human intervention	User-friendly & intuitive operation together with fully integrated mechanical interlocking system. Limit human intervention to the minimum due to HV part maintenance free	
Equipment failure	Misalignment of moving contacts	Fixed breaker / No moving contact and shield	
	Breakdown of insulating	Insulating (SF6) system monitored	
	Conductive linkage contacting live parts	Compartment sealed for life	
		Life Is On Schneider	

tric

Moving from Withdrawable to Fixed Mounted Medium Voltage Circuit Breaker Switchgear

Moving to Fixed Mounted Switchgear - Drivers

- Racking circuit breakers is a known cause of electrical arc flash events and is cited multiple times in IEEE 1584 Annex C.
- NFPA 70E PPE tables require higher levels of PPE for racking operations.
- Fixed circuit breaker switchgear eliminates racking and therefore eliminates one potential risk.
- Generally, racking problems are uncommon. When they do occur, they are often due to improper breaker reinstallation. They can increase in frequency with lack of maintenance and age of the equipment.

Moving to Fixed Mounted Switchgear - Drivers

Attribute	Fixed Circuit Breaker Switchgear	Withdrawable Circuit Breaker Switchgear	
Design & Operability	Isolation via disconnectCompact design w/ front access	 Isolation via breaker withdrawal from cubicle Larger design requiring rear access 	
Safety	 Has grounding switch Interlocked to prevent entry until system is grounded Has some level of arc resistance Removes risks associated w/ removing withdrawable components 	 Requires manual grounding via hot stick & cable assemblies Allows access while switchgear is energized Arc resistance construction is a unique design Retains the risk assoicated w/ racking operations 	
Reliability Cost	 Intuiative interlocked operation Has no complex racking mechansim or shutter assemblies Lower in both capital & 	User dependent manual steps to withdraw the breaker to isolate circuit Requires use of racking mechanisms and shutter assemblies Higher in both capital & operational expenses	
	operational expenses	Life Is On Schneide	

I E

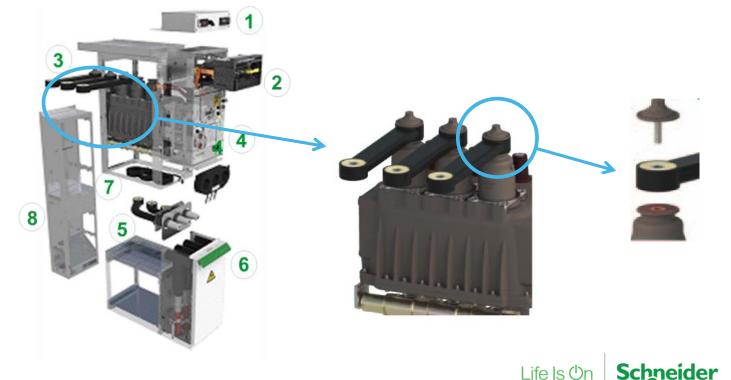
tric

The Newest Category of Medium Voltage Switchgear

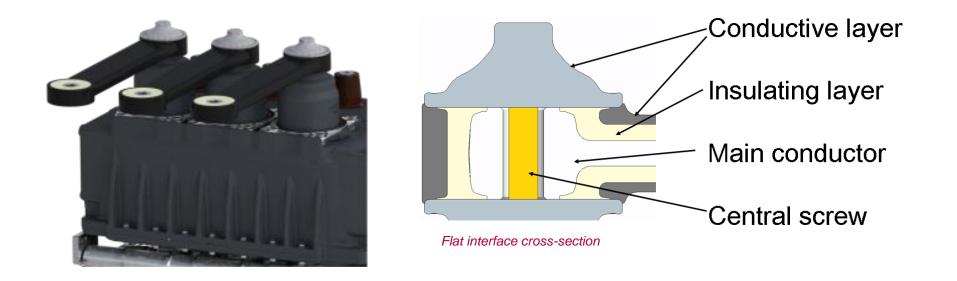
What is 2SIS (shielded solid insulation system)

- A new class of MV switchgear
- Entire MV live circuit path is grounded
 - "accidentally touchable" per IEC...user safety
 - No more exposed conductors
 - Likelihood of internal arc is extremely limited
- Protected against the environment
 - Dust, pollution, condensation, humidity, aggressive atmosphere, etc.
 - Removes risk of ineffective or no maintenance...no need for cleaning

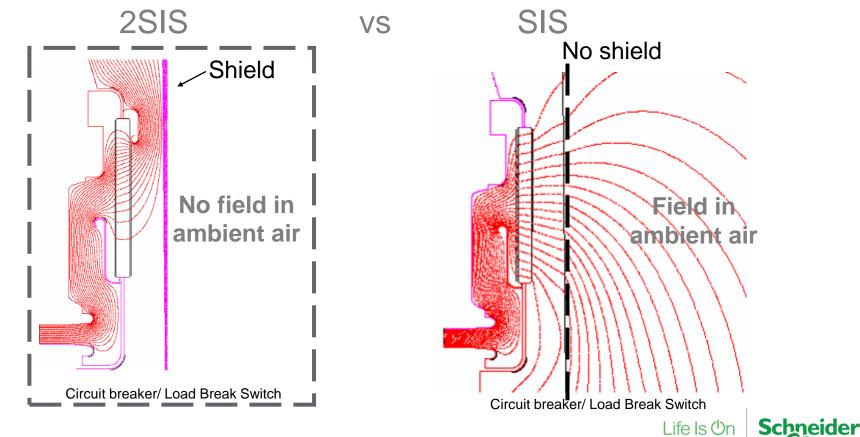
Life Is O

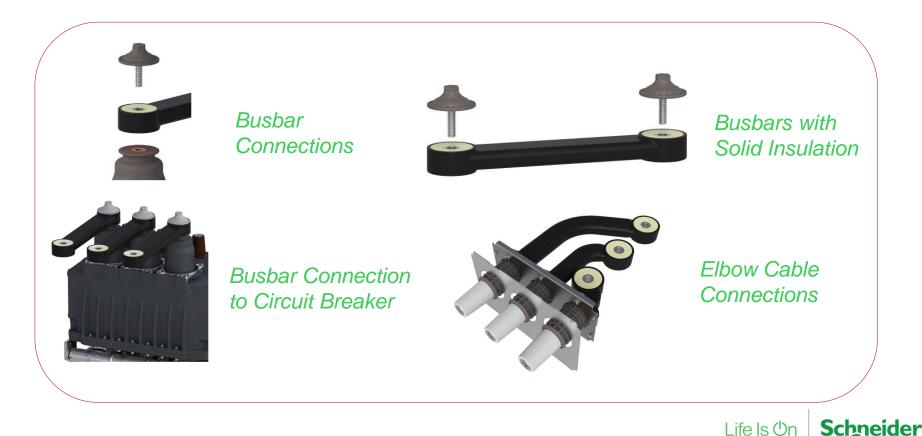

• No electric fields = no tracking, no partial discharge

1) Low Voltage cabinet

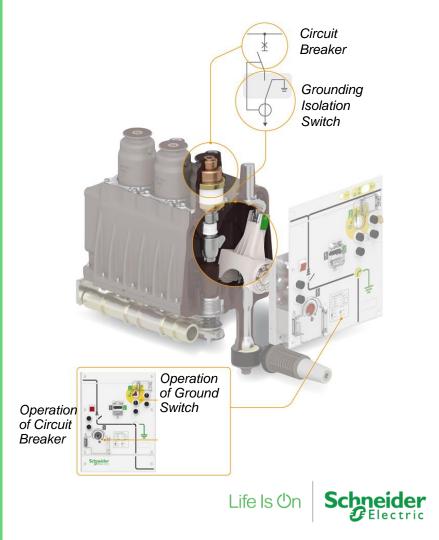

2) Cable test

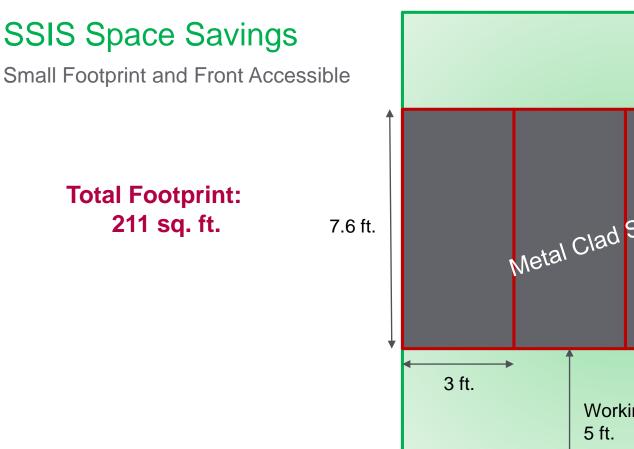
(3) Top connections

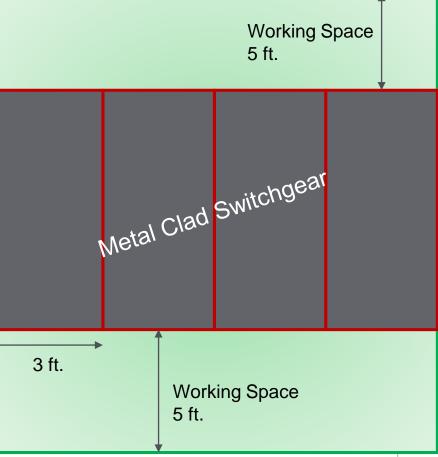

- 4) Core unit
- 5 Bottom connections
- 6) Bottom compartment
- 7) Sensors (CTs and VTs)
- 8 Gas exhaust duct



Solid insulation covered by a conductive layer

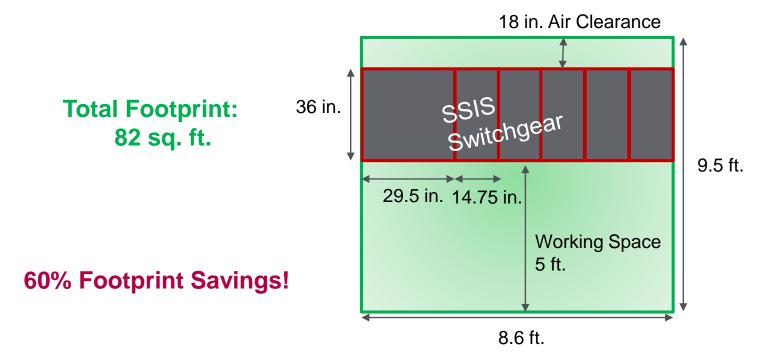



Core Unit


Vacuum Circuit Breaker

Grounding Isolation Switch

Completely Epoxy Insulated & Shielded



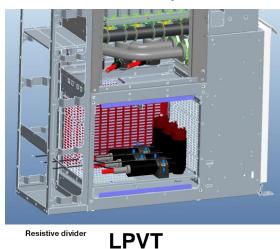
Schneider

Life Is On

SSIS Space Savings

Small Footprint and Front Accessible

Uout


R1

R₂

Up

Sensor Technology

MV Connection up to 15kV

Converts Voltage up to 120V Signal

V_{in}: 0.2 to 4V V_{out}: 100/ sqrt 3 = 120V

Converter

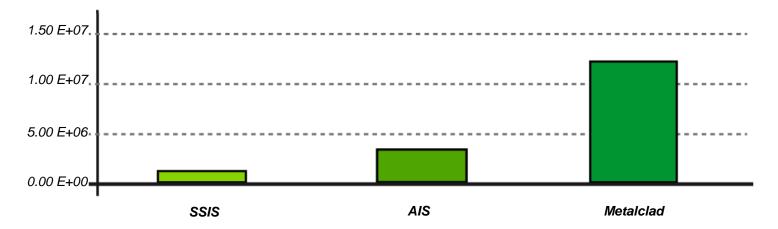

Voltage Protection Scheme

Protective Relay

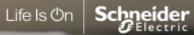
00

SSIS Environmental Impact - Core Materials

Product weight	148.3	326.0	923.0
Steel	73.0	154.0	732.4
Copper	9.0	45.0	95.2
Aluminium	10.0	10.0	10.6
Epoxy Resin	34.0	52.0	60.1
Other	22.3	65.0	24.7



Sch


SSIS Environmental Impact - CO2 Contribution

Global Warming (g ~CO2) M+D+U, 20 years, 30%In

Life Is On

Questions?

THANK YOU.

Life Is On Schneider

Confidential Property of Schneider Electric | Page 28

