

High Level Programming for
Embedded Developers

Judge Maygarden
jmaygarden@ieee.org

About Me

 Firmware engineer at ActiGraph
 Past experience

 Avionics maintenance, air-traffic control and flight
simulation trainers

 Optical and radar range tracking systems
 Ruggedized displays and special missions avionics

 BS in Electrical and Computer Engineering from
the University of Alabama

Overview

 Embedded Software Development
 Survey of Programming Paradigms
 Application of High-level Methods to

Constrained Systems
 C-Langauge Examples

What is firmware?

 Synonymous with Embedded Software
 Usually describes fixed, small programs that

are internal to electronic devices
 Traditional examples:

 TV remote control
 Anti-lock brakes

 Modern examples:
 Smart phones
 GPS navigation systems

Who writes firmware?

 Traditionally electrical engineers
 Strong grasp of hardware design
 Minimal knowledge of software construction

Embedded Software Development

 Traditional firmware
 Small code-base focused on a specific task
 Fixed functionality

 Modern firmware
 Performs varied tasks with diverse interfaces
 Configurable and field updatable

Embedded Software Development

 Legacy ActiGraph
research devices
1.Initialize from PC
2.Sample sensors
3.Perform filtering
4.Record data
5.Download to PC

Embedded Software Development

 Future ActiGraph
consumer devices:
 Graphical display and

user interface
 Wireless connectivity
 Meal/goal tracking
 Music player
 Workout modes
 And so on...

Embedded Software Development

 Increased firmware responsibility requires more
robust and maintainable software designs

 Imperative programming languages and
constructs are still required because of memory
and processing speed limitations

 Progress in high-level languages with
comparatively unlimited resources is still
applicable to firmware

Survey of Programming
Paradigms

 Object-Oriented Programming
 Functional Programming
 Event-driven Programming

Object-Oriented Programming

 Arrange programs into a network of systems
responsible for their own data and algorithms

 Key Ideas
 Encapsulation
 Dynamic Dispatch and Polymorphism

Encapsulation

 Also known as Information Hiding
 Grady Brooch defines encapsulation as "the

process of compartmentalizing the elements of
an abstraction that constitute its structure and
behavior; encapsulation serves to separate the
contractual interface of an abstraction and its
implementation."

Encapsulation (cont.)

 Improves maintainability and flexibility
 Since object internals are hidden, tight coupling

between components is reduced
 Object algorithms and internal data structures can

be modified without affecting other components
 Influences on state are isolated to the responsible

object (reduces debugging time!)

Dynamic Dispatch

 Objects determine code to be executed when
invoked at run-time

 Provides a more expressive replacement of
large conditional structures

 Useful for implementation of finite state
machines

Polymorphism

 An object of one type to appears as an object of
another type through a common interface

 Allows for different objects to be used
interchangeably

 New functionality may be added (i.e. plugged-
in) without changing client code

Functional Programming

 Focuses on evaluation of functions instead of
operations which cause changes in state

 Key Ideas
 Referential Transparency
 Higher-order Functions

Referential Transparency

 An expression exhibits referential transparency
if it can be replaced by a value with no change
to the program

 Such functions avoid dependence upon
external state data

 Programs avoid mutable (non-constant) data
 Referentially opaque functions have side-

effects that cause maintenance problems
 Allows trivial parallelization as well as caching

of function results

Higher-order Functions

 Higher-order functions may take other functions
as arguments and return functions as results

 Improves productivity and maintenance by
reducing code duplication–especially boilerplate
code

 The common higher-order functions map and
reduce form the basis of the MapReduce
software framework that makes Google tick!

Event-driven Programming

 Program flow is determined by detection and
handling of events

 Key Ideas
 Message Passing
 Publish/Subscribe

Message Passing

 Data is conveyed through exchange of discrete
packets instead of shared state

 Sending and receiving is usually asynchronous
and data is copied (versus shared)

 Allows for chain of responsibility and one-to-
many event handling mechanisms

Publish/Subscribe

 Receivers are not statically bound to senders,
but may subscribe to published events at run-
time

 Promotes loose-coupling of components
 Publishing modules need not have any

knowledge of the usage or consequences of
events as carried out by subscribers

High-level Methods in
Constrained Systems

 A pragmatic approach is required as
concessions must be made for memory and/or
timing limitations

 Applicable goals of high-level constructs to
observe:
 Encapsulate distinct features
 Decouple disparate systems
 Minimize code duplication

Examples in C

#ifndef ITERATOR_H
#define ITERATOR_H

#include <stdbool.h>

typedef struct Iterator Iterator;

struct Iterator {
 bool (*next)(Iterator *);
 void * (*value)(Iterator *);
 void * collection;
 void * state;
};

#endif /* ITERATOR_H */

#ifndef COLLECTION_H
#define COLLECTION_H

#include "iterator.h"

typedef struct Collection Collection;

struct Collection {
 void (*initializeIterator)(Collection *, Iterator *);
};

#endif /* COLLECTION_H */

Examples in C

#ifndef SLIST_H
#define SLIST_H

#include "collection.h"

typedef struct SList SList;
typedef struct SNode SNode;

extern Collection * slist_to_collection(SList *);

extern SList *slist_new(void);
extern void slist_delete(SList *);

extern SNode * slist_insert(SList *, void *);

#endif /* SLIST_H */

Examples in C
struct SList
{
 Collection collection;
 SNode *head;
};

struct SNode
{
 SNode *next;
 void *data;
};

static bool
next(Iterator *it)
{
 const SNode *p = it->state;

 it->state = p->next;

 return NULL != it->state;
}

static void *
value(Iterator *it)
{
 const SNode *p = it->state;

 return p->data;
}

static void
initializeIterator(SList *self, Iterator *it)
{
 it->next = next;
 it->value = value;
 it->collection = self;
 it->state = self->head;
}

Collection *
slist_to_collection(SList *self)
{
 return &self->collection;
}

SList *
slist_new(void)
{
 SList *self;

 self = malloc(sizeof (SList));
 if (self) {
 self->collection.initializeIterator =
 (void (*)(Collection *, Iterator *))
initializeIterator;
 self->head = NULL;
 }

 return self;
}

Examples in C
void
slist_delete(SList *self)
{
 SNode *p;

 while (self->head) {
 p = self->head;
 self->head = self->head->next;
 free(p);
 }

 free(self);
}

SNode *
slist_insert(SList *self, void *data)
{
 SNode *p;

 p = malloc(sizeof (SNode));
 if (p) {
 p->next = self->head;
 p->data = data;
 self->head = p;
 }

 return p;
}

Examples in C

void
map(Collection *c, void (*function)(void *value, void *upvalue), void *upvalue)
{
 Iterator it;

 c->initializeIterator(c, &it);
 do {
 function(it.value(&it), upvalue);
 } while (it.next(&it));
}

void
map2(Collection *c1, Collection *c2,
 void (*function)(void *value1, void *value2, void *upvalue), void *upvalue)
{
 Iterator it1, it2;

 c1->initializeIterator(c1, &it1);
 c2->initializeIterator(c2, &it2);
 do {
 function(it1.value(&it1), it2.value(&it2), upvalue);
 } while (it1.next(&it1) && it2.next(&it2));
}

Examples in C

void *
reduce(Collection *c, void *initialValue,
 void * (*function)(void *result, void *value, void *upvalue),
 void *upvalue)
{
 Iterator it;
 void *result;

 result = initialValue;
 c->initializeIterator(c, &it);
 do {
 result = function(result, it.value(&it), upvalue);
 } while (it.next(&it));

 return result;
}

Examples in C

#include <stdio.h>

#include "array.h"
#include "map.h"
#include "reduce.h"
#include "slist.h"

static void
print_number(void *value, void *upvalue)
{
 printf("%s: %d\n", (char const *) upvalue, (int) value);
}

static void
print_number2(void *value1, void *value2, void *arg)
{
 printf("%s: %d, %d\n", (char const *) upvalue, (int) value1, (int) value2);
}

static void *
sum(void *result, void *value, void *upvalue)
{
 return (void *) ((int) result + (int) value);
}

Examples in C

int
main(int argc, char *argv[])
{
 Array *array;
 SList *slist;
 Collection *c1, *c2;
 int i;

 array = array_new(10);
 slist = slist_new();
 c1 = slist_to_collection(slist);
 c2 = array_to_collection(array);
 for (i = 0; i < 10; ++i) {
 array_set(array, i, (void *) i);
 slist_insert(slist, (void *) i);
 }

 map(c2, print_number, "map");

 map2(c1, c2, print_number2, "map2");

 printf("reduce: %d\n", (int) reduce(c2, (void *) 0, sum, NULL));

 slist_delete(slist);
 array_delete(array);

 return 0;
}

Examples in C

$./ieee
map: 0
map: 1
map: 2
map: 3
map: 4
map: 5
map: 6
map: 7
map: 8
map: 9
map2: 9, 0
map2: 8, 1
map2: 7, 2
map2: 6, 3
map2: 5, 4
map2: 4, 5
map2: 3, 6
map2: 2, 7
map2: 1, 8
map2: 0, 9
reduce: 45

High Level Programming for
Embedded Developers

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

