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About Me

 Firmware engineer at ActiGraph
 Past experience

 Avionics maintenance, air-traffic control and flight 
simulation trainers

 Optical and radar range tracking systems
 Ruggedized displays and special missions avionics

 BS in Electrical and Computer Engineering from 
the University of Alabama



  

Overview

 Embedded Software Development
 Survey of Programming Paradigms
 Application of High-level Methods to 

Constrained Systems
 C-Langauge Examples



  

What is firmware?

 Synonymous with Embedded Software
 Usually describes fixed, small programs that 

are internal to electronic devices
 Traditional examples:

 TV remote control
 Anti-lock brakes

 Modern examples:
 Smart phones
 GPS navigation systems



  

Who writes firmware?

 Traditionally electrical engineers
 Strong grasp of hardware design
 Minimal knowledge of software construction



  

Embedded Software Development

 Traditional firmware
 Small code-base focused on a specific task
 Fixed functionality

 Modern firmware
 Performs varied tasks with diverse interfaces
 Configurable and field updatable



  

Embedded Software Development

 Legacy ActiGraph 
research devices
1.Initialize from PC
2.Sample sensors
3.Perform filtering
4.Record data
5.Download to PC



  

Embedded Software Development

 Future ActiGraph 
consumer devices:
 Graphical display and 

user interface
 Wireless connectivity
 Meal/goal tracking
 Music player
 Workout modes
 And so on...



  

Embedded Software Development

 Increased firmware responsibility requires more 
robust and maintainable software designs

 Imperative programming languages and 
constructs are still required because of memory 
and processing speed limitations

 Progress in high-level languages with 
comparatively unlimited resources is still 
applicable to firmware



  

Survey of Programming 
Paradigms

 Object-Oriented Programming
 Functional Programming
 Event-driven Programming



  

Object-Oriented Programming

 Arrange programs into a network of systems 
responsible for their own data and algorithms

 Key Ideas
 Encapsulation
 Dynamic Dispatch and Polymorphism



  

Encapsulation

 Also known as Information Hiding
 Grady Brooch defines encapsulation as "the 

process of compartmentalizing the elements of 
an abstraction that constitute its structure and 
behavior; encapsulation serves to separate the 
contractual interface of an abstraction and its 
implementation."



  

Encapsulation (cont.)

 Improves maintainability and flexibility
 Since object internals are hidden, tight coupling 

between components is reduced
 Object algorithms and internal data structures can 

be modified without affecting other components
 Influences on state are isolated to the responsible 

object (reduces debugging time!)



  

Dynamic Dispatch

 Objects determine code to be executed when 
invoked at run-time

 Provides a more expressive replacement of 
large conditional structures

 Useful for implementation of finite state 
machines



  

Polymorphism

 An object of one type to appears as an object of 
another type through a common interface

 Allows for different objects to be used 
interchangeably

 New functionality may be added (i.e. plugged-
in) without changing client code



  

Functional Programming

 Focuses on evaluation of functions instead of 
operations which cause changes in state

 Key Ideas
 Referential Transparency
 Higher-order Functions



  

Referential Transparency

 An expression exhibits referential transparency 
if it can be replaced by a value with no change 
to the program

 Such functions avoid dependence upon 
external state data

 Programs avoid mutable (non-constant) data
 Referentially opaque functions have side-

effects that cause maintenance problems
 Allows trivial parallelization as well as caching 

of function results



  

Higher-order Functions

 Higher-order functions may take other functions 
as arguments and return functions as results

 Improves productivity and maintenance by  
reducing code duplication–especially boilerplate 
code

 The common higher-order functions map and 
reduce form the basis of the MapReduce 
software framework that makes Google tick!



  

Event-driven Programming

 Program flow is determined by detection and 
handling of events

 Key Ideas
 Message Passing
 Publish/Subscribe



  

Message Passing

 Data is conveyed through exchange of discrete 
packets instead of shared state

 Sending and receiving is usually asynchronous 
and data is copied (versus shared)

 Allows for chain of responsibility and one-to-
many event handling mechanisms



  

Publish/Subscribe

 Receivers are not statically bound to senders, 
but may subscribe to published events at run-
time

 Promotes loose-coupling of components
 Publishing modules need not have any 

knowledge of the usage or consequences of 
events as carried out by subscribers



  

High-level Methods in 
Constrained Systems

 A pragmatic approach is required as 
concessions must be made for memory and/or 
timing limitations

 Applicable goals of high-level constructs to 
observe:
 Encapsulate distinct features
 Decouple disparate systems
 Minimize code duplication



  

Examples in C

#ifndef ITERATOR_H
#define ITERATOR_H

#include <stdbool.h>

typedef struct Iterator Iterator;

struct Iterator {
    bool (*next)(Iterator *);
    void * (*value)(Iterator *);
    void * collection;
    void * state;
};

#endif /* ITERATOR_H */

#ifndef COLLECTION_H
#define COLLECTION_H

#include "iterator.h"

typedef struct Collection Collection;

struct Collection {
    void (*initializeIterator)(Collection *, Iterator *);
};

#endif /* COLLECTION_H */



  

Examples in C

#ifndef SLIST_H
#define SLIST_H

#include "collection.h"

typedef struct SList SList;
typedef struct SNode SNode;

extern Collection * slist_to_collection(SList *);

extern SList *slist_new(void);
extern void slist_delete(SList *);

extern SNode * slist_insert(SList *, void *);

#endif /* SLIST_H */



  

Examples in C
struct SList
{
    Collection collection;
    SNode *head;
};

struct SNode
{
    SNode *next;
    void *data;
};

static bool
next(Iterator *it)
{
    const SNode *p = it->state;

    it->state = p->next;

    return NULL != it->state;
}

static void *
value(Iterator *it)
{
    const SNode *p = it->state;

    return p->data;
}

static void
initializeIterator(SList *self, Iterator *it)
{
    it->next = next;
    it->value = value;
    it->collection = self;
    it->state = self->head;
}

Collection *
slist_to_collection(SList *self)
{
    return &self->collection;
}

SList *
slist_new(void)
{
    SList *self;

    self = malloc(sizeof (SList));
    if (self) {
        self->collection.initializeIterator =
            (void (*)(Collection *, Iterator *))
initializeIterator;
        self->head = NULL;
    }

    return self;
}



  

Examples in C
void
slist_delete(SList *self)
{
    SNode *p;

    while (self->head) {
        p = self->head;
        self->head = self->head->next;
        free(p);
    }

    free(self);
}

SNode *
slist_insert(SList *self, void *data)
{
    SNode *p;

    p = malloc(sizeof (SNode));
    if (p) {
        p->next = self->head;
        p->data = data;
        self->head = p;
    }

    return p;
}



  

Examples in C

void
map(Collection *c, void (*function)(void *value, void *upvalue), void *upvalue)
{
    Iterator it;

    c->initializeIterator(c, &it);
    do {
        function(it.value(&it), upvalue);
    } while (it.next(&it));
}

void
map2(Collection *c1, Collection *c2,
     void (*function)(void *value1, void *value2, void *upvalue), void *upvalue)
{
    Iterator it1, it2;

    c1->initializeIterator(c1, &it1);
    c2->initializeIterator(c2, &it2);
    do {
        function(it1.value(&it1), it2.value(&it2), upvalue);
    } while (it1.next(&it1) && it2.next(&it2));
}



  

Examples in C

void *
reduce(Collection *c, void *initialValue,
       void * (*function)(void *result, void *value, void *upvalue),
       void *upvalue)
{
    Iterator it;
    void *result;

    result = initialValue;
    c->initializeIterator(c, &it);
    do {
        result = function(result, it.value(&it), upvalue);
    } while (it.next(&it));

    return result;
}



  

Examples in C

#include <stdio.h>

#include "array.h"
#include "map.h"
#include "reduce.h"
#include "slist.h"

static void
print_number(void *value, void *upvalue)
{
    printf("%s: %d\n", (char const *) upvalue, (int) value);
}

static void
print_number2(void *value1, void *value2, void *arg)
{
    printf("%s: %d, %d\n", (char const *) upvalue, (int) value1, (int) value2);
}

static void *
sum(void *result, void *value, void *upvalue)
{
    return (void *) ((int) result + (int) value);
}



  

Examples in C

int
main(int argc, char *argv[])
{
    Array *array;
    SList *slist;
    Collection *c1, *c2;
    int i;

    array = array_new(10);
    slist = slist_new();
    c1 = slist_to_collection(slist);
    c2 = array_to_collection(array);
    for (i = 0; i < 10; ++i) {
        array_set(array, i, (void *) i);
        slist_insert(slist, (void *) i);
    }

    map(c2, print_number, "map");

    map2(c1, c2, print_number2, "map2");

    printf("reduce: %d\n", (int) reduce(c2, (void *) 0, sum, NULL));

    slist_delete(slist);
    array_delete(array);

    return 0;
}



  

Examples in C

$ ./ieee
map: 0
map: 1
map: 2
map: 3
map: 4
map: 5
map: 6
map: 7
map: 8
map: 9
map2: 9, 0
map2: 8, 1
map2: 7, 2
map2: 6, 3
map2: 5, 4
map2: 4, 5
map2: 3, 6
map2: 2, 7
map2: 1, 8
map2: 0, 9
reduce: 45



  

High Level Programming for 
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Questions?
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