

CMOS RF Integrated Systems--Trends and Challenges

May 3, 2001 Chicago, IL

David J. Allstot

Boeing-Egtvedt Chair Professor

Department of Electrical Engineering University of Washington Seattle, WA 98195-2500 Tel: 206-221-5764; Fax: 206-543-3842

allstot@ee.washington.edu

Outline

- - RF Active and Passive Devices v/s Scaling Roadmap
 - Monolithic Inductors v/s Monolithic Transformers
 - Single-Ended v/s Fully-Differential RF Circuits
 - Compact Modeling / Simulated Annealing Optimization
 - CMOS RF Circuit Examples: LNA, DA, PA, etc.

SIA National Technology Roadmap

Gate Length (nm)	180	140	120	100	70 50	35	
Year First Product Shipment	1997	1999	2001	2003	2006	2009	2012
MPU FETs/cm**2	8M	14M	16M	24M	40M	64M	100M
ASIC CHIP SIZE (mm**2)	180	800	850	900	1000	1100	1300
	-00	000	000	300	1000	1100	1300
ASIC PACKAGE PINS/BALLS	1100	1500	1800	2200	3000	4100	5500
	300	500	600	700	000	1200	1500
	300	300	000	700	300	1200	1300
MAX. WIRING LEVELS	6	6 or 7	7	7	7 or 8	8 or 9	9
MIN. LOGIC VDD (V)	1.8-2.5	1.5-1.8	1.2-1.5	1.2-1.5	0.9-1.2	0.6-0.9	0.5-0.6
POWER (HAND HELD) (W)	1.2	1.4	1.7	2	2.4	2.8	3.2
	70	00	440	400	4.00	170	
POWER (HEAT SINK) (W)	/0	90	110	130	160	170	1/5

Key Issues: Cascodes Problematic at Low Voltages

More metal layers for inductors/transformers

Roadmap of Linearity (IP₃ at gm=40mS) and P_{1dB}

Ye	ear	1995	1997	1999	2001	2003	2005	2007	2009
Gate Ler	igth (nm)	250	180	140	120	100	70	50	35
	IP ₃ (dBm)	16	21	19	17	9	1		
Wg=200µm	Id(mA)	7.0	6.7	4.4	3.9	2.6	1.2		
constant	Wg(µm)	200	150	110	100	80	60	50	35
	IP ₃ (dBm)	16	17	15	16	17	11	9	6
Wg:scaled With Lg	Id(mA)	7.0	8.8	7.0	6.5	5.5	3.0	2.9	3.6
	Wg(µm)	280	240	170	140	110	80	70	60
Wg:optimized	IP ₃ (dBm)	21	23	22	21	19	20	16	11
	P _{1dB} (dBm)	9	11	10	9	7	8	4	-1
scanny	Id(mA)	4.7	6.7	4.9	4.1	3.6	2.2	2.0	1.9

IP3 = 10log(gm/gm₃) + 12.2dBm; 12.2dBm is a fudge factor

A=planar transformer; B=stacked transformer;C=planar inductor

Table 1			
	Structure	Number of turns	Metallization
Transformer a	Planar (Fig. 1a)	3	Metal 5
Transformer b	Planar (Fig. 1a)	4	Metal 5
Transformer c	Planar (Fig. 1a)	5	Metal 5
Transformer d	Planar (Fig. 1a)	4	Metal 5 shorted to
			Metal 4
Transformer e	Non-planar (Fig 1b)	4	Metal 5 spiral on
			Metal 4 spiral
Inductor	(Fig 1c)	5	Metal 5

0.25 mm CMOS transformer test chip

900 MHz CMOS Low-Noise Amplifier (cont.)

• J.J. Zhou and D.J. Allstot, "A fullyintegrated CMOS 900 MHz LNA using monolithic transformers," *ISSCC Digest of Technical Papers*, pp. 132-133, Feb. 1998.

• J.J. Zhou and D.J. Allstot, "Monolithic transformers and their application in a differential CMOS RF low-noise amplifier," *IEEE J. Solid-State Circuits*, pp. 2020-2027, Dec. 1998.

- Supply Voltage = 3 V
- Power Dissipation = 18 mW
- Noise Figure = 4.1 dB
- S21 = 12.3 dB; S12 = -33.0 dB
- 1 dB Compression (input) = -16dBm
- Technology: 3-metal 0.6um CMOS

 Key Trend: Fully-Differential RF Circuits to Reject Switching Noise

0.5-8.5 GHz CMOS Fully-Differential Dist. Amplifier Drain Line Bias Voltage (L_{D1}) 1.6n (L_{D1}) 1.6n (L_{D1}) 1.6n 50r 25Ω $\overline{\mathcal{M}}$ \sim (L_{D2}) 0.9n (L_{D2}) (L_{D1}) 1.6n (L_{D1}) 1.6n **50** Ω (L_{D1}) 25Ω 0.9n 1.6n 0.080 $\overline{\mathcal{M}}$ $\overline{\mathbf{n}}$ (L_{D3}) (L_{D3}) 1.6n 0.6 0.6 150f -150f (L_{G1}) 1.3n (L_{G1}) 1.3n 1.3n 250 $\overline{}$ \sim $\Lambda\Lambda$ (L_{G1}) 1.3n (L_{G1}) 1.3n (L_{G2}) 0.7n (L_{G1}) 1.3n 25Ω AC Input \mathcal{M} 50p Vdd=3.0 tepresents square-spiral monolotic inductor, Aodeled as two port equivalent sub-circuit. 50 0.6 0.6 Dashed line indicates pakage parasitics (bonding pad, bond wire, and lead frame) 550 0.6 400 0.6 Regulated Constant 550 Current 0.6 • First fully-monolithic fully-differential 0.6 µm CMOS DA. Key Idea: Wideband due to elimination of inductor source degeneration. Also achieves digital switching noise rejection.

Comparative Results--Single-ended v/s Differential

	Fully-Differential Distributed Amplifier	Single-ended Distributed Amplifier [9]	
Differential Gain, S _{DD21}	5 ± 1.5dB (1.5 - 7.5GHz)	6.1 ± 1.3dB (0.5 – 4GHz)	
Unity Gain Bandwidth	8.5GHz	5.5GHz (Probed) 4GHz (Pakaged)	
Noise Figure	8.7 – 13dB (1 – 2GHz)	5.4 – 8.2dB (1 – 2GHz)	
Isolation, S _{DD12}	-22dB	-20dB	
Power dissipation	216mW (V _{DD} =3.0V)	103.8mW (V _{DD} =3.0V)	
Chip Size	1.3mm x 2.2mm	1.4mm x 0.8mm	
Technology	0.6µm standard CMOS	0.6µm standard CMOS	

0.5-8.5 GHz CMOS Fully-Diff. Dist. Amp. (cont.)

• H.-T. Ahn and D.J. Allstot, "A 0.5-8.5 GHz fully-differential CMOS distributed amplifier," *IEEE J. Solid-State Circuits*, 2001. (To appear)

Note: Hee-Tae Ahn is currently with National Semiconductor, Inc.

Key Points: Fully-Differential Topologies for rejection of digital switching noise and elimination of some inductive feedback effects. Simulated annealing optimization for robust design accuracy.

• First fully-monolithic fully-balanced 0.6 μm CMOS PA. Achieved 55% drain efficiency due to inductor modeling/CAD optimization (basically simulated-annealing *load-pull* method).

900 MHz 100 mW CMOS Class-C Power Amp (cont.)

- R. Gupta and D.J. Allstot, "Fully-Monolithic CMOS RF Power Amplifiers: Recent Advances," *IEEE Communications Magazine*, vol. 37, pp. 94-98, April 1999.
- •R. Gupta, B. Ballweber, and D.J. Allstot, "Design and optimization of CMOS RF power amplifiers," *IEEE J. Solid-State Circuits*, Jan. 2001.
- S21 = 6.0 dB
- S11 = -6.15 dB
- S12 = -25.6 dB

Slide 37

• PAE = 30 %

HIPERLAN family					
1861					
HIPERLAN TYPE 1	HIPERLAN TYPE 2	HIPERLAN TYPE 3	HIPERLAN TYPE 4		
Wireless LAN	Wireless ATM	Wireless ATM	Wireless ATM		
	Indoor access	Remote access	Interconnect		
MAC	DLC	DLC	DLC		
PHY	PHY	PHY	PHY		
(5 GHz)	(5 GHz)	(5 GHz)	(17 GHz)		
20 + Mbps	20 + Mbps	20 + Mbps	150 + Mbps		
			Slide 40		

Conclusions

- Fast improvement in RF Devices v/s scaling trends
- Slow improvement in Passive devices v/s scaling trends
- Implementation of Fully-Differential RF circuits ... A la mixed-signal circuits in recent years
- Modeling/Optimization key to robust RF designs
- CMOS RF Wireless LAN at 5GHz (Atheros, Radiata, etc.) Products are here!
- Seamless Multi-Standard CMOS Radios (Bluetooth, 802.11, etc. -- Mobilian Corporation -- neat products coming!