Atomic-Scale Nanoelectronics

Mark C. Hersam Assistant Professor

Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108 Ph: 847-491-2696, m-hersam@northwestern.edu WWW: http://pubweb.northwestern.edu/~mhe663/

IEEE ED/CAS/SSC Chicago Chapter Meeting October 25, 2001 Schaumburg, Illinois

Molecular Nanoelectronics on Silicon?

Projected timeline for the electronics industry:

A. C. Seabaugh, P. Mazumder, *Proceedings of the IEEE*, <u>87</u>, 535 (1999).

1975	200	0 20	25 2	050	20	75	2100
СМС	os –	nanoscale CMOS					
tunnel SRAM							
		<u> </u>					
III-V RTD / transistor							
		single electronics					
Flash single electron memory							
					Mo Elec	lecul	ar cs

What can we do today?

Outline

Study silicon-based molecular nanotechnology issues with the UHV-STM

- Bottom-up approach in a pristine environment
- Studies on silicon bridge the gap between fundamental research and modern technology

Outline:

- (1) Robustness of Si(100)-2×1:H surface
- (2) STM-induced desorption: Implications for nanofab and CMOS
- (3) FCL: Single molecule studies (Organic and biological molecules)
- (4) Hybrid nanoelectronics and conventional microelectronics

Equipment / Facilities

- ThermoMicroscopes CP Research ® atomic force microscope (AFM)
- Room temperature ultra-high vacuum (UHV) scanning tunneling microscope (STM) interfaced to controlled atmosphere glove box
- Cryogenic UHV STM with variable temperature control between 10 K and 400 K.

Robustness of Si(100)-2×1:H

M. C. Hersam, D. S. Thompson, N. P. Guisinger, J. S. Moore, and J. W. Lyding, Appl. Phys. Lett., 78, 886 (2001).

XPS results after ambient exposure

Nanolithography on H Passivated Si(100)

J. W. Lyding, T.-C. Shen, J. S. Hubacek, J. R. Tucker, and G. C. Abeln, Appl. Phys. Lett., <u>64</u>, 2010 (1994).

A relatively stable and unreactive surface is produced by hydrogen passivating the Si(100)-2×1 surface in ultra-high vacuum (UHV).

Highly reactive "dangling bonds" are created by using the STM as a highly localized electron beam.

The linewidth and desorption yield are a function of the incident electron energy, the current density, and the total electron dose.

- Selective chemistry can be accomplished on patterned areas.
- Large isotope effect exists between hydrogen and deuterium.

CMOS \leftrightarrow **STM Analogy**

Conventional Silicon Microelectronics

Electron Stimulated Desorption Isotope Effect

Ph. Avouris, R. E. Walkup, A. R. Rossi, T.-C. Shen, G. C. Abeln, J. R. Tucker, and J. W. Lyding, Chem. Phys. Lett., 257, 148 (1996).

- Deuterium has a much lower ESD yield than hydrogen.
- Desorption conditions exist where all of the hydrogen and none of the deuterium is removed from the surface.
- Deuterating CMOS devices leads to longer device lifetimes.

Direct Measurement of D:H Ratio

M. C. Hersam, K. Cheng, N. P. Guisinger, J. Lee, and J. W. Lyding, submitted to Appl. Phys. Lett. (2001).

Passivation at 650 K \Rightarrow D:H Ratio ~ 5 Passivation at 350 K \Rightarrow D:H Ratio ~ 50

Statistical thermodynamics model confirms experimental results.

Silicon-Based Molecular Nanoelectronics

Goal: Single Molecule Electronic Switching and Storage Conformational or Electronic State Transitions

Approach: Bottom-Up UHV STM -> Atomic Resolution

Hydrogen Resist Technique, Selective Molecular Adsorption Feedback Controlled Lithography Single Molecule Studies (NBE, CuPc & C_{60}) Nanoscale Contacting Scheme

New Directions

New Molecules, Nanobioelectronics, Nanochemical Analysis

Selective Oxidation

UHV Oxidation @ 10⁻⁶ Torr

J. W. Lyding, T.-C. Shen, J. S. Hubacek, J. R. Tucker, and G. C. Abeln, *Appl. Phys. Lett.*, <u>64</u>, 2010 (1994).

Loadlock Oxidation @ 4 psi

T.-C. Shen, C. Wang, J. W. Lyding, and J. R. Tucker, *Appl. Phys. Lett.*, <u>66</u>, 976 (1995).

Selective Nitridation

J. W. Lyding, T.-C. Shen, G. C. Abeln, C. Wang, and J. R. Tucker, *Nanotechnology*, 7, 128 (1996).

Selective Metallization: Physical Deposition

T.-C. Shen, C. Wang, and J. R. Tucker, *Phys. Rev. Lett.* <u>78</u>, 1271 (1997).

T. Hashizume, S. Heike, M. I. Lutwyche, S. Watanabe, K. Nakajima, T. Nishi and Y. Wada, *Jpn. J. Appl. Phys*, <u>35</u>(8B), Part 2, L1085-L1088 (1996).

Selective Metallization: CVD of Gold

IBM Collaborators: Phaedon Avouris and Paul Seidler

Selective Au depostion:

1. Room T Dose: Incomplete Dissociation 2. High T Dose: Metal Deposition

After 10L Dose After 10L Dose After 20L Dose

Precursor Molecule: CH₃CH₂AuP(CH₃)₃

Selective Metallization: CVD of Aluminum

Novel amine-stabilized alane Al precursor developed by Dr. Hyungsoo Choi, Beckman Institute

- To improve morphology for thicker layers, use TiCl₄ as a nucleating agent.
- Selective depositon of TiCl₄ has been demonstrated at room temperature.

Selective Molecular Adsorption of Norbornadiene on Silicon

G. C. Abeln, M. C. Hersam, D. S. Thompson, S.-T. Hwang, H. Choi, J. S. Moore, and J. W. Lyding, J. Vac. Sci. Technol. B, 16, 3874 (1998).

Norbornadiene (NBE) is conformationally predisposed to react with adjacent Si(100) dimers to form organosilicon "cage" structures ([2+2] cycloaddition reaction).

Silicon-Based Molecular Nanoelectronics A Bottom-Up Approach

Silicon-Based Molecular Nanoelectronics A Bottom-Up Approach

Copper Phthalocyanine Stationary vs Rotating Molecules

Evidence of Molecular Rotation

Individual NBE Molecules on Si(100)

(45 Å)² filled states image of four depassivated sites

Filled states image after norbornadiene dose

Empty states image after norbornadiene dose

- STM images are a convolution of topography and electronic structure.
- Multi-bias imaging can sometimes distinguish different adsorbed molecules.
- In this case, the boxed molecule behaves like water, whereas the circled molecule is presumably norbornadiene (NBE).

STM spectroscopy can provide deconvolved information about electronic structure.

Copper Phthalocyanine - Spectroscopic Behavior

Copper Phthalocyanine – Tip Induced Motion

Single Molecule Spectroscopy C₆₀ - A Case Study

Intramolecular Spectroscopy of C_{60}

Use pattern recognition algorithm which analyzes 3D data set in energy space to identify electronically distinct regions.

Location/Registration of Nanostructures

M. C. Hersam, G. C. Abeln, and J. W. Lyding, *Microelectronic Engineering*, <u>47</u>, 235 (1999).

Delineation of a *p-n* junction after location.

STM Imaging of a p-n Junction

Electrically Contacting Nanostructures p-n Junction Approach

STM Nanofabrication Zone

p-n junction approach

- Compatible with UHV processing and H-passivation/depassivation schemes.
- Will enable potentiometry and spectroscopy for measuring nanoscale electronic structure.

Si(100), n-type, As-doped (< 0.005 Ω-cm)

Processing:

1.) Boron predep @ 950°C for 1 hour 2.) ~ 1270°C anneal in UHV for 1 min.

Image before patterning.

Image after patterning a line across the *p-n* junction.

Nanoscale Charge Transport Measurements

- Electrical breakdown measurements on nanoscale systems
 - Gold nanowires (nanoscale electromigration)
 - Carbon nanotubes (quantized breakdown)
 - > New molecules (e.g., DNA, thiol-derived SAMs)
 - > Novel reliability techniques may be needed

Gold Nanowire Failure:

Nanotube breakdown:

M. C. Hersam, et al., Appl. Phys. Lett., 72, 915 (1998).

Nanotube breakdown data is from: M. C. Hersam, et al., *Science and Application of Nanotubes*, editors: Tománek and Richard Enbody, Kluwer Academic Publishers, p. 223 (2000).

Acknowledgements

Graduate Students

Postdoctoral Research Associate

Dr. Edward Foley

Michael Arnold Rajiv Basu Elizabeth Fabbroni Mark Greene Reagan Kinser Matthew Such **Undergraduate Students**

Andrew Baluch Meghan Campbell Liam Cavanaugh Christopher Horst Sai-Pong Leung

Funding provided by:

Arnold and Mabel Beckman Foundation Army Research Office DURINT National Science Foundation Rockefeller Brothers Fund Northwestern University NSEC, IBNAM