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HIV structure, Nature, 9/2008
In collaboration with CCR/NIH







* For consumer images: JPEG
* For scientific data: More open question

(Welnberger Seroussi, Sapiro)
Courtesy of JPL/NASA
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Video SnapCut:
Video Segmentation in Real Life
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Let us see It In action:

AdobeAfter Effects Plug-In




New Models and Applications
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The Sparseland Model for Images

A fixed Dictionary

D

S

J

\

F.!
[ |
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ |
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

\ b

L]
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& random
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g Every column in
D ( ) is
a prototype signal
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(say L) non-zeros.
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What is sparse coding?

A 1 2
a = argamlnEH Da -y Hz s.t. HgHg <L




What isdictionary learning or
spar se modeling?




Learning D (to reconstruct)
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data fitting regularizer

» Lo “norm”: ||All; = |17 A # 0}
» (1 norm: ||Ajll; = |Aij|




Example: Inpainting/Denoisin

Learning Sparsity




Detection/Classification
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Learning Sparsity







Model 1
Sparsity + Self-similarity = Group Sparsity

e Combine the two of the most successful
models for images




Sparsity + Self-similarity=Group Sparsity

Adobe
Camera Raw

Proposed
Method




Model 2:Universal Coding

(A*,D") = arg mmv |1 X; — D»\"—'i.J,-||E +  &O(A))
A.D _'i' N — — N’
J data fitting regularizer

* Are there better sparsifying terms?
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Our Approach: Universal Modeling

e Construct a model almost as good as If we
knew the correct parameters
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Better Models Work!

Percentage of
perfect active
set recovery

L1
MOL

—O&— L1/RMC
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Denoising
PSNR
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What is the model?

* Following MDL, code length, regret
computations, predictive-sequential
universal modeling, Jeffreys prior, ...

n 2
A" = arg n‘Hn N L |IX — DA|IF + 7 T‘ log (|cvjk| + 3)

j=1 k=1

o Actually parameter free!




Model 3:Unsupervised clustering
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Learning Sparsity




Conclusions

 New models and applications of dictionary
learning and sparse coding

 Much more still coming/to come and open
— Hierarchical
— Intrinsic dictionary properties/incoherence

* Dictionary learning code on line:
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