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Surveillance: Gotcha!
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Tracking



3D from single image/view
Estimated Horizon



3D from a Single View/Image
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Processing of Elevation Maps
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Learning Sparsity
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Medical and Bio Imaging

HIV structure, Nature, 9/2008
In collaboration with CCR/NIH
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Diffusion tensor imaging



Compression

• For consumer images: JPEG

• For scientific data: More open question

Rock in MARS, compressed with JPEG-LS 
(Weinberger, Seroussi, Sapiro)

Courtesy of JPL/NASA



Enhance/Change

Inpainting

http://mountains.ece.umn.edu/~guille/inpainting.htm



Video Inpainting



Colorization



Colorization
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Goal



Let us see it in action:
Adobe After Effects Plug-In
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Learning Sparsity
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The SparselandSparselandSparselandSparseland Model for Images 
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What is sparse coding?
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What is dictionary learning or 
sparse modeling?
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Learning D (to reconstruct)

D≈≈≈≈X A

Field & Olshausen (‘96)

Engan et. al. (‘99)

Lewicki & Sejnowski (‘00)

Cotter et. al. (‘03)

Gribonval et. al. (‘04)

Aharon, Elad, & Bruckstein (‘04) 

Aharon, Elad, & Bruckstein (‘05)

Ng et al. (‘07)

Mairal, Sapiro, Elad  (‘08)
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Example: Inpainting/Denoising



Detection/Classification

MIT -- Learning Sparsity
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Better Sensing

Learning Sparsity
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New Models

Learning Sparsity
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Model 1
Sparsity + Self-similarity = Group Sparsity

• Combine the two of the most successful 
models for images
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Sparsity + Self-similarity=Group Sparsity
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28

Adobe 
Camera Raw

Proposed
Method



Model 2: Universal Coding
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• Are there better sparsifying terms?



Our Approach: Universal Modeling

• Construct a model almost as good as if we 
knew the correct parameters
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Better Models Work!
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What is the model?

• Following MDL, code length, regret 
computations, predictive-sequential 
universal modeling, Jeffreys prior, …

• Actually parameter free!

Learning Sparsity
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Model 3:Unsupervised clustering
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• Learn dictionaries and classify
• Dictionaries with different sizes
• New metric for classification



Conclusions

• New models and applications of dictionary 
learning and sparse coding

• Much more still coming/to come and open
– Hierarchical

– Intrinsic dictionary properties/incoherence

• Dictionary learning code on line:

http://www.di.ens.fr/willow/SPAMS/
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