ISSCC 2011 RF Highlights

Ramin K. Poorfard

03/09/2010
Outline

- Overall and RF Paper Statistics

- Trends in Wireless architectures
 - SAW-less WBCDMA transceivers
 - Technology Scalable RF front-ends

- RF Building Blocks
 - Push-pull LNA’s
 - Phase shifters
 - Harmonic reject mixers
 - Noise cancelling LNA’s
Overall papers statistics

- 669 submission with 211 accepted (32% acceptance rate)
- 28 paper sessions
RF session titles:

- RF techniques
- PLLs
- Wireless & mm-Wave Connectivity
- mm-Wave Design Techniques
- Cellular
- Transmitter blocks
- Low power wireless
RF topics were fairly diversified.

Two trends, however, stood out.

1. **SAW-less WBCDMA transceivers**
 - TX side solutions (Polar transmitters, 25% duty cycle passive mixing)
 - RX side solutions (High IIP2 RX path)

2. **Technology scalable RF circuits**
 - Wide-band Inductor-less designs
 - High-IF architectures with no SAW filter
WBCDMA Issues

- Simultaneous operation of TX and RX.
- The out-of-band TX noise can become in-band at RX.
- Large TX blockers also affect the RX through its nonlinearity.
- Duplexers are used to facilitate this.
- The TX/RX isolation, however, was not sufficient and further filtering was needed (Hence the extra SAW filters).
- The TX out-of-band noise can be overcome by using polar modulators
 - Several papers were devoted to how to implement a practical polar modulator
- A high dynamic RX chain would handle large TX blockers
 - High IIP2 and IIP3 LNA and mixer architectures were proposed.
Polar modulators

- The Cartesian (I/Q) up-conversion, while simple, has extra noisy components (such as DACs, image filters and mixers)
- Also needs a low efficiency PA.
- Alternatively, one can convert I/Q to ρ (AM) and θ (PM).
- The AM path can be applied to the PA gain and/or supply hence improving the power efficiency.
- The PM can be done by modulating a VCO phase via a PLL.
- This approach is inherently less noisy. However, ...
- The delay between the two paths is crucial
 - Less than 1ns in WBCDMA
- The PM BW (8MHz) is wider than that of AM (3.84MHz) and is much wider the RF synthesizer BW (200 to 300kHz).
- Two point injection is usually used to solve this issue.
Any injection at the VCO is HPF.

Any injection at the PFD is LPF.

Combined they can be ALL-pass filtered.

VCO gain and linearity is a challenge.
3.1: Spur-Free All-Digital PLL
3.1: Spur-Free All-Digital PLL (cont.)

- Digital implementation handles the AM/PM delay problem.

- PLL blocks are implemented digitally, except VCO and PFD
 - ADC role is via Time-to-Digital Converters (TDC)
 - DAC role is played by switched cap varactor in the VCO

- Dithering is required to break periodic quantization noise
 - But it will increase phase noise
 - Use out-of-band tonal dither

- VCO gain calibration is still required.
21.8 Wide-band polar transmitter

- Focuses on VCO gain and linearity issue
- Applied a feedback around the VCO to control its gain.
- The loop consists of:
 - V/F -> VCO
 - F/V -> Based on switched cap
- Switched capacitor is essentially a resistor which is a function of switching frequency.
- RC calibration can bring the VCO gain to within ±1%
- This is excluding Vref accuracy which needs a one-time factory calibration.
- The AM/PM delay matching is still a concern.
21.7 Polar transmitter employing RFDAC

- All digital approach to solve the AM/PM problem.
 - All digital PLL with two point injection

- A High DR mixing DAC is used to merge the AM and PM paths.
 - 10 thermometer, 4 binary
 - Oversampled to GHz range
 - 17-bit resolution in 3.84MHz (CDMA)
 - 19-bit resolution in 200kHz (EDGE)

- LO leakage is managed by:
 - Single ended tail currents
 - Cross coupled caps.
 - Shutting off LO signal to the unused portion of the mixer when the gain is lowered.

- Interesting, but:
 - Higher power
 - Low efficiency PA.
Passive mixers with 25% duty cycles are used.
- Seamlessly performs the adding function by utilizing non-overlapping LO's
- Reduces the number of V→I and I→V converters, hence enhancing out-of-band noise and linearity.

The switching along with the load capacitor synthesizes a load resistance.
- Affects the mixer gain
- Compensate via variable resistor
- Also allows variable BW.

Variable resistor are nonlinear
- Put the switch in the feedback path.
Technology Scalable RF front-end

- Finer line geometries allow digital circuit scaling.
- The conventional analog/RF circuits, however, do not.
- Two main reasons
 - Matching requirements
 - Inductors

- Low-IF and Zero-IF architectures eliminate the SAW filters but need high IIP2, low 1/f noise and small DC offsets
 - All function of circuit area and hence non-scalable.
 - One paper proposed going back to high IF architectures which is insensitive to IIP2, 1/f noise and DC offset and therefore scalable.
 - A new method was proposed for highly selective filtering in lieu of SAW filters.

- Narrow-band LNA’s require on-chip inductances.
 - Use wide-band LNA’s (no inductor) with sufficient dynamic range instead.
3.5 Process scalable high-Q filters

- **Zero-IF and Low-IF Architectures**
 - Large RC time constants for BB
 - 1/f noise sensitive
 - IIP2 sensitive
 - DC offset sensitive

- **These are all non-scalable**

- **Use High-IF architecture**
 - Back to the past, but scalable
 - Small RC for BB
 - No 1/f noise, IIP2 or DC offset issues
 - Channel selection and Image rejection is an issue (SAW?)

- **Need a BPF for channel selection and image rejection**
 - Channel selection: Use real_in/real_out Z for BPF centered at F_{sw}.
 - Image Rejection: Use Complex_in/Complex_out Z
A complex loaded switched BPF at LNA input

- Protects the LNA from blockers and image.
- 10dB image rejection.
- The complex load is based on a 16-phase (16-path) switched capacitor.
- $16*F_{\text{if}}$ is chosen to push the folding frequencies to $15*F_{\text{if}}$ and $17*F_{\text{if}}$

Use cascaded complex loaded switched BPF at BB for more IR.

Issues:

- Some preselect filtering is still required to attenuate folding frequencies.
- Also, blockers at LO harmonics needs rejection.
- LO feed though to antenna.
- No Phase noise relaxation.
- Only 50dB image rejection.
21.4 Inductorless WBCDMA/EDGE in 65nm

- Multi-band RX need multiple LNA’s
 - No tunable pre-select filters
- Each NB LNA has inductors
 - Too many inductors
 - Not scalable
- Use WB shunt feedback
 - To change the gain turn portion of the FB resistor into load.
 - To keep the Z_{in} change the Gm.
- Current-mode mixer
 - DC to RF virtual ground
 - R_l acting as degeneration for SW’s making them linear.
 - AC coupling help 1/f noise and IIP2
- Highly linear LNA and mixer
 - No need for inter-stage SAW
 - LO coupling to RF minimized since there are no inductive coupling
3.3: Push Pull LNA in 32nm

- **Use both PMOS and NMOS Gm’s**
 - Intel’s 32nm High-K metal gate process has similar strength PMOS and NMOS
 - Similar value for L_p and L_n.

- **Stacked output to ensure reliability**

- **But twice an many inductors are used compared to the single-ended case.**
 - The gate inductors are used by the transmitter as well.
 - Since the current in the four inductors are either in-phase or out-of-phase, they can be closely coupled.
 - This will increase the effective inductance.
 - It also allows them to be laid out on top of one another.
3.7: Phase shifter in 65nm

- **Multiple antenna Phased arrays**
 - Increase SNR
 - Spatial interferer rejection

- **Vector rotation**
 - Quadrature down conversion
 - Sine and Cosine gains

- **Sine and Cosine gains**
 - Non-uniform Sine step vs. phase step
 - Gain need high resolution

- **Approximate Sine and Cosine**
 - Use a fractional ratio
 - Uniform phase step -> almost uniform alpha step (cap steps)
 - Switch capacitor compatible
 - The final summation is done via charge sharing as well.
3.8: Harmonic rejection mixer (HRM)

- **LO waveform is rectangular**
 - Rich in higher harmonics
- **Conventional HRM**
 - Uses RF weighting
 - Needs RF matching (hard to do)
- **Any imperfect matching causes HR deterioration**
- **What if the weighting is done in IF**
 - Lower frequency
 - Easier to match
- **Furthermore two layers of switches are used**
 - By commutating the second switch after the first one is done:
 - Second layer switch mismatch irrelevant
 - Robust 1/f noise and IIP2
 - Improved image rejection
9.7: Noise cancelling LNA

- **TV application**
 - Wide-band input matching

- **Conventional noise cancelling LNA**
 - Loop gain around M1 reduces its input impedance and noise.
 - M2’s gm is higher to reduce NF.

- **But the output is not balanced.**
 - Higher IIP2
 - Output buffers

- **Use similar M1 and M2**
 - Use auxiliary \(G_{mx} \) for gain boosting around M1.
 - Also biases the two gates.

- **Use current balancer to enforce** \(\text{i}_{\text{sig}+} = -\text{i}_{\text{seg}} \)
 - \(R_{\text{in,CM}} \gg R_{\text{in,DM}} \)
 - Rds will reduce the impact
 - Use cascade stages.

\[
\begin{align*}
V_{\text{in}} & \quad \text{R}_L \\
M1, g_m & \quad V_{b1} \\
V_{\text{OUT,P}} & \quad V_{b2} \\
M2, N\cdot g_m & \quad V_{\text{OUT,N}}
\end{align*}
\]