ISSCC 2013 RF Highlights

Ramin K. Poorfard
03/01/2013
Outline

- 60th anniversary of ISSCC
- Paper Statistics
- RF Techniques
- Frequency Generation Techniques
Special Celebrations

- 60th anniversary of ISSCC (1954-2013)
- Lots of nostalgic anecdotes and statistics

![ISSCC Attendees Graph]

<table>
<thead>
<tr>
<th>Year</th>
<th>No. of Attendees</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>2000</td>
</tr>
<tr>
<td>2008</td>
<td>2200</td>
</tr>
<tr>
<td>2009</td>
<td>2400</td>
</tr>
<tr>
<td>2010</td>
<td>2600</td>
</tr>
<tr>
<td>2011</td>
<td>3000</td>
</tr>
<tr>
<td>2012</td>
<td>3200</td>
</tr>
<tr>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
</tr>
</tbody>
</table>
209 papers were presented
- About the same as last year (206)
- Organized in 27 sessions

Out of the 94 papers from industry, 16 were from the institutes

The papers were uniformly distributed
- Geographically
- Academy vs. industry

Number of papers from Asia is increasing appreciably
RF paper statistics

- **RF session titles:**
 - RF Techniques
 - mm-wave Techniques
 - High Performance Wireless
 - Wireless Transceivers for Smart Devices
 - Frequency Generation
 - Energy Efficient Wireless

- **US and Academia had a larger share**

- **RF Forums**
 - Advanced RF Transceiver Design Techniques
 - Mixed Signal/RF Design and Modeling in Next Generation CMOS RF Short courses
5.1: SAW-less Front-End for TDD/FDD

- Out-of-band interferes
 - Dynamic Range (De-sentization)
 - LO Harmonics
 - Reciprocal Mixing

- External SAW filter
 - Resolves the above issues
 - Single-ended to differential
 - Cost

- Current-mode signal processing
 - LNA acts as a V/I converter
 - I/V conversion after BB filtering
 - Blockers removed in current domain

![Diagram showing current mode operation and passive mixer](image-url)
5.1: SAW-less Front-End for TDD/FDD (cont.)

- The bottle neck is the LNA V/I
 - Linearity is set by this Gm

- CG for Wide-band Zin
 - No current gain
 - NF = 1 + Gamma = 3 (too high)

- On-chip transformers
 - Allows SE/Diff conversion
 - Provides maximum headroom
 - Provide current gain and negative Vin

- Use gate boosting
 - Apply the signal to the gate
 - Improve NF
LO Harmonics are still an issue

- One approach is harmonic-Rejection Mixer
 - Needs higher VCO frequencies

25% duty-cycle mixer is used

- The down converted mixer current is passed through an LC network
- Resonance at $4f_{LO}$
- Mixing at f_{LO} converts the notches to
 - $3f_{LO}$ and $5f_{LO}$

Some debate though

- LO harmonic rejection seems to be limited
- Mixing also with $3f_{LO}$ and $5f_{LO}$

40nm CMOS process
5.2: Spatial and Frequency Filtering

- **N-path filtering**
 - High-Q tunable RF filters
 - High RF Imp. for $f_{RF} = f_{LO}$
 - Low RF Imp. for $f_{RF} \neq f_{LO}$

- **Better Linearity**
 - No active component at RF

- **Extend to phase-array**
 - $RC > T_{on}$
 - Antenna is a current source
 - Signals add up in C_{BB}
 - Constructively for in-beam
 - Destructively for out-of-beam
 - SNR improvement
 - Signals are correlated, noise is not
5.2: Spatial and Frequency Filtering (cont.)

- Combine the two ideas
 - Four antennas
 - 8-path filtering for each
 - 8-phase mixer
 - Steer the beam at N*90/8

- Harmonic rejection is still an issue
 - N*f_{LO} goes through

- In this case, 3*f_{LO} is targeted not f_{LO}

- Use base-band weights
 - 3*f_{LO} phase is three times that of f_{LO}
 - Apply BB weights
 - Constructively add for 3*f_{LO}
 - Destructively add for f_{LO}

- 65nm CMOS
5.3: Phase noise cancellation

- If Phase noise can be cancelled, then
 - Use R.O. instead of LC Osc.
 - But how?

- Use a replica path
 - But replica of what?

- Phase noise is symmetric
 - A copy of the phase noise exists
 - Extract it and subtract it
 - Let’s see how it is done
5.3: Phase noise cancellation (cont.)

- **Overall Concept**
 - Main path: Direct down conversion
 - Aux path: Down convert the image
 - Not very practical
 - Needs a second synthesizer
 - Phase noise of 2nd synthesizer

- **Use a limiter based approach**
 - Symmetric spurs \rightarrow AM
 - Anti-symmetric spurs \rightarrow PM
 - Limiter only allows PM through
 - Adjust gain and delay for proper cancellation
5.3: Phase noise cancellation (cont.)

- **Limiter acts as a PN mixer**
 - Sampling at zero-crossings ($2\Delta f_b$)
 - Folding and images will emerge
 - This will impact the PM subtraction

- **Use an N-phase approach**
 - With proper weighting the first N-2 images will be cancelled.
 - The first image is then at N-1 (smaller impact)
5.3: Phase noise cancellation (cont.)

- **Final Design**
 - All circuits are differential
 - Inverters are used for all TIA’s
 - Inv. Also act as limiters
 - What about gain calibration?

- **Digitize both paths**
 - Off chip LMS algorithm
 - X_{RM} exists in both paths
 - Causes correlation
 - Provides proper G
 - Rest is uncorrelated
 - Long enough averaging will remove this extra signal

- **Blocker detector**
 - If no blocker, turn off Aux path

- **40nm CMOS**
5.4: Stacked Array PA

- **Array PA’s**
 - **Serial**
 - Too high an output impedance
 - **Parallel**
 - Too low an output impedance
 - Both inefficient due to large impedance ratios
 - High Q → High IL (for a given Q_{comp})

- **Use arrays of S/P instead**
 - Can provide better matching
 - Lower impedance ratio
 - Better efficiency
Large swing is an issue
- Hot Carrier Injection
- Oxide dielectric breakdown

Use stacking
- Distribute the swing and supply across several series devices
- Too many transformers
- Hard to route

Merge transformers into one
- Simplify the design
- Enhance the power routings
- Use HV for the top most device
 - Needs to handle large V_{db}
- Parasitic S/D caps affect efficiency
5.4: Stacked Array PA (cont.)

- C_p along with R_{on} (when in triode) causes loss
 - During charge and discharge

- Often inductors are used to tune
 - Cost
 - Narrow band

- Use negative capacitors
 - Wide-band
 - But how?
 - Use Miller effect

- Transformers design
 - Low lateral and secondary caps

- 65nm CMOS
 - $P_{out} = 28\text{dBm}$, $PAE = 20.6\%$
5.5: Supply switching PA

- Efficiency degrades when PA B.O.
- What is supply drops when signal drops?
 - Needs DC/DC converters
 - Use stacked PA for Vdd/2 case
 - Mid point needs to be around Vdd/2
 - Use a keeper
- <2ns threshold detector (EVM Impact)
 - Some switching noise issues
5.6: TX leakage suppression

- **RFID system**
 - Back scatter and AM modulate an incoming CW
 - RX signal contaminated by the TX CW

- **Current techniques**
 - Active blocker injection
 - VCO cancellation

- **Proposed solution**
 - Non-linear amplification with a dead zone
20.1: Class-D VCO

- **Class-B VCO**
 - Large swing (+-Vdd)
 - Need Tail current source (or resistor)
 - Due to R_{on} losses

- **What if we have very low R_{on}?**
 - Go for even higher swings
 - Loss in R_{on} is negligible (good switch)
 - Lower Vdd, hence lower power

![Diagram of Class-B VCO with time-invariant and time-variant tanks, showing high impedance and good switches.](image)
20.1: Class-D VCO (cont.)

- **Operation**
 - T1: The I_{La} charges up
 - T2: La resonates with C

- **Circuit equations**
 - Continuous I_{La} and its derivative
 - $T1 = T2$ (due to symmetry)
 - $V_{peak} = V_{dd} \left(1 + \sqrt{\frac{\pi^2 \alpha^2}{4}} + 1 \right) \approx 3.27V_{dd}$
 - $\omega_D = \frac{1}{\sqrt{LC}} \sqrt{\frac{2}{\alpha}} \quad \alpha = \frac{1}{2} + \sqrt{\frac{1}{4} + \frac{4}{\pi^2}} \approx 1.3$

- **Note that the tank is time variant**
 - Makes phase noise calculation even more difficult

- **Very large (1.35mm) switches were used**
 - Poor $1/f^3$ and supply pushing
20.2: Class F VCO

- **Motivation: Reduce power**
 - Larger tail current help PN
 - Until the devices go in triode

- **Basic idea: Improve ISF**
 - Noise injection when V is flat
 - Not during zero crossing
 - But how?

- **Make the tank to have high impedance at** f_0 **and** $3f_0$

- **Make** $Z(3f_0) = \frac{Z(f_0)}{x}$
 - A more advanced tank is required
A transformer-based tank will provide two pair of complex poles

By setting the proper coupling factor, the intended impedance can be achieved

Oscillation at higher frequency
- Lower loop gain
- Injection locking to 3f₁

Very large gate voltages
- Use thick-oxide devices

Transformed based tank has two resonance frequency for imperfect coupling factor:

\[Z_{in} = \frac{s^3(L_pL_sC_2 (1-K_m^2)) + s(L_p)}{s^4(L_pL_sC_1C_2 (1-K_m^2)) + s^2(L_sC_2 + L_pC_1) + 1} \]

Forth-order polynomial:

\[[Z_{in}]Ω \]

Lower Q, higher BW

Fine tuning capacitors (C₁)

Coarse tuning capacitors (C₂)

M₁ & M₂ thick oxide devices ➔ More than 10 years operation