

What we do

- Smart grid R&D
- Industry standards testing and evaluation
- Economic analysis
- Pricing model development and testing

- Customer benefit
- Replicable, scalable across market types
- Environmental progress
- Promote innovation and opportunity
- Data and fact-driven

- Headquartered at UT
- •7 employees
- •\$4 M budget FY 2010-11
- •501(c)(3)
- •Spend more on UT researchers and grad students than on own salaries

Who we are

Board of directors

- Roger Duncan, *President*
- Tom Edgar, UT, Secretary
- Jose Beceiro, Chamber, *Treasurer*
- Isaac Barchas, UT
- Jim Marston, EDF
- Randi Shade, Austin City Council
- Larry Weis, Austin Energy

Major programs

•Smart grid demonstration project (*DOE*)

•Economic sector analysis (EDA)

•Home energy research (DOE and Doris Duke Charitable Foundation)

Major programs

- Home Research
 Lab
- Industry Standards
 Cmte

- •711 acre mixed use•2 miles from Capitol
- •All green-built
- •world's first LEED platinum hospital
- reclaimed water system

native landscaping
25% affordable housing
senior housing
CHP gas microturbine
Chilled water loop

Two energy economies

Electricity

Percentage from petroleum:

Transportation

Percentage *not* from petroleum:

0.6 percent

0.3 percent

Challenges in electricity

Peak demand

Pollution impact

Pricing model

Peak demand

Challenges in electricity

Pollution impact

Pricing model

How customers use electricity

What this electricity costs utilities

Status quo

Build peaking power plant

Construction cost Interest - construction cost Transmission lines Upsize substations Upsize distribution Fuel to burn at plant Water Pipelines and fuel transport Pollution mitigation

Alternate approaches

Build power plant

Energy Efficiency Distributed Generation Demand Response

- Construction cost Interest - construction cost Transmission lines Upsize substations Upsize distribution Fuel to burn at plant Water
- Pipelines and fuel transport Pollution mitigation

Not all neighborhoods will be impacted equally

Prius ownership distribution in San Antonio

Peak demand

Challenges in electricity

Pollution impact

Pricing model

Options

Baseload

Nuclear Coal

Intermediate

Natural gas Coal

Peak

Natural gas Solar (west aligned)

Partial options

Wind Solar (south aligned)

Peak demand

Challenges in electricity

Pollution impact

Pricing model

Generation

Two components of electricity delivery

Transmission

and distribution

With spikes in electricity use

Retail utilities incur costs for peak capacity

Additional capacity only used a few hours a year

Additional capacity only produces revenue a few hours a year

Peak plants side idle up to 95% of year

Retail electricity cost structure

Retail electricity cost structure

As electricity use increases...

Retail utilities lose money selling peak electricity

How long can you sell 40¢ electricity for 11¢?

Spikes are coming.

focused

systems

How we get there:

Industry standards

What is electricity's future?

Look at telecom

Distribution-level systems

Decoupled pricing

Energy Internet

Disruptive Technologies on Micro-Grid

Residential Solar

- -Incentives
- -High penetration rate

•Electric Vehicle

- -Charge stations
- -High penetration rate
- Residential Storage
- •HEMS
- Commercial Solar and Storage

Micro-grid characteristics

Provide value to Prosumers of energy

- -Energy Trading between customers
- -Energy Storage
- -Backup Power from clean sources
- Embedded intelligence and communications
 - -Pricing signals
 - -Support variety of pricing models depending on maturity
- Adaptable Mesh network
- •Sustainable business model in an era of cheap energy