Massively Broadband Wireless Communications and RFIC Design research at The University of Texas at Austin

Professor Ted Rappaport and Felix Gutierrez

[wireless, felixgutierrez] @mail.utexas.edu

1Wireless Networking and Communication Group
Department of Electrical and Computer Engineering
The University of Texas at Austin

IEEE Joint Chapter of the Communications/Signal Processing Society, Austin, TX
April 14, 2010
Research Goals

- Create integrated circuits (ICs) operating at millimeter-wave and terahertz frequencies (60 GHz and beyond)
- Using **CMOS process** – mainstream inexpensive fabrication technology that creates computer chips, digital cameras, and USB thumb drives
- “On-chip Antennas” - **low-cost, low-power** antennas fabricated directly on an IC chip
Why mmWave?

- **Huge** amounts of wireless spectrum available (currently unused)
- Able to send **massive** amounts of data (billions of bits every second) over local area (~10 meters)
- **Directionality** in sensing – vehicle radar
- Inexpensive CMOS fabrication now capable of **mmWave** operation
- mmWave antenna sizes are comparable to integrated circuit (IC) sizes
 - **Tiny metal sheets** available on ICs to fabricate mmWave/THz antennas
- **Reduces fabrication costs**
- **Low power, light weight, won’t vibrate loose.**

Contains 2 antennas
• Spectrum = real estate
Applications - Vehicle Radar

- **Phased array** of IC antennas
 - Directional beam for long distance vehicle radar and collision avoidance
 - Steerable beams
Information Showers

- The future: Showering of information
- Mounted on ceilings, walls, doorways, roadside
- Massive data streaming while walking or driving
- Roadside markers can provide safety information, navigation, or even ads
Die Photos
Objective of This Presentation

- Provide tips and precautions for creating on-chip antennas at mmWave
- Common tools used to help create on-chip antennas at mmWave
- Show an example CMOS integrated circuit (IC) created at UT-Austin
 - Contains 2 on-chip mmWave antennas and an array of test structures to help design and simulate on-chip antennas
Why On-Chip Antennas?

- Millimeter-Wave (mmWave) and THz signals have small wavelengths (\(\lambda\))
 - 60 GHz in Free Space = 5 mm
 - If immersed in dielectric, \(\lambda\) shrinks by sqrt(permittivity)
 - Example: permittivity of SiO\(_2\) \(\approx\) 4 \(\Rightarrow\) wavelength in SiO\(_2\) \(\approx\) 2.5 mm
- Antenna sizes are comparable to integrated circuit (IC) sizes
- **Multiple metal layers** on ICs available
 - Can be used to fabricate mmWave/THz antennas
 - Enough IC area available for directional arrays
- Eliminate cable/connector loss
- Saves PCB real estate
 - (ex: handhelds, laptops, etc.)
- Reduces fabrication costs
IC Cross Section
IC Cross Section

Metal Layers $\approx 10 \, \mu \text{m}$

Substrate $\approx 100 - 750 \, \mu \text{m}$

Bulk Silicon
IC Cross Section

Metal Layers $\approx 10 \ \mu m$
"Interconnect"
"BEOL"

Substrate $\approx 100 - 750 \ \mu m$
Bulk Silicon
"FEOL"

“Diffusion” Layer $\approx 1 \ \mu m$
Transistor Cross Section

Silicon Substrate

Source

Gate
Ex: Polysilicon, Metal

Drain

Ex: 180, 90, 45 nm

“Length”

Insulator
Ex: SiO₂, High-k

S ——— D
- Example interconnect cross section of a CMOS process
 - 6+ metal layers (Al or Cu)
 - Insulating dielectric between (SiO$_2$)
 - Interconnecting Vias (W)
 - Lossy Substrate (silicon)
 - All layers \approx 0.5 - 1 um.

Fig. 1. Example metallization cross section of an IC. Figure taken from [8].

- Transistors buried in substrate (1 μm deep)
- Metal layers/vias used to interconnect transistors
 - In Analog/RF, can also be used to create passive structures such as parallel plate capacitors (ex: Metal-Insulator-Metal “MIM” Caps) or inductor loops

Fig. 1. Example metallization cross section of an IC. Figure taken from [8].

• Thicker Metal Layers at top
 • Likely used for power lines and antenna fabrication
• Rectangular vias with variable sizes across layers

Fig. 1. Example metallization cross section of an IC. Figure taken from [8].

Each IC generation packs more layers of metal
- 9 metal layers in 45nm technology
- Push towards “low-k” dielectric for digital circuits
- Permittivity of dielectric approaching 2

Fig. 1. Example metallization cross section of an IC. Figure taken from [8].

- Very thick top metal layer
 - Denoted as “+1” such as “7+1”
- Passivation layer placed above top-most metal layer (not shown)
 - Protects chip from environment

Fig. 1. Example metallization cross section of an IC. Figure taken from [8].

mmWave RFIC Fabrication

- Designing and fabricating RFICs and antennas requires extensive use of **electromagnetic simulators**
 - **Electrical properties** of materials are needed to accurately simulate electric and magnetic fields
 - **Losses** can significantly alter radiation patterns and performance such as radiation efficiency

- **Electromagnetic simulators require**
 - Relative **permittivity** (ε_r) of all insulators
 - **Conductivity** (σ) of metal layers and **loss tangent** (δ) of insulators
 - **Thickness** and sometimes **surface roughness** of metal layers
 - Substrate (silicon) conductivity and losses
- Materials properties such as **metal conductivities** and **dielectric losses** are frequency dependent and unknown at mmWave and terahertz regime
 - Foundry may not know, especially older fab technology
- Materials are also **process dependent** as metal thicknesses shrink and dielectric properties change (ex: low-k dielectrics) each generation
- Can change wafer to wafer
EMAG Simulators

- Finite Element Method (FEM) - can be used for planar and 3-D objects
- Moment method (MOM) - mainly used for planar structures
- Finite Difference Time Domain (FDTD) - time-domain calculation and representation of fields

TABLE I

<table>
<thead>
<tr>
<th>Software Name</th>
<th>Theoretical Model</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensemble (Designer)</td>
<td>Moment method</td>
<td>Ansoft</td>
</tr>
<tr>
<td>IE3D</td>
<td>Moment method</td>
<td>Zeland</td>
</tr>
<tr>
<td>Momentum</td>
<td>Moment method</td>
<td>HP</td>
</tr>
<tr>
<td>EM</td>
<td>Moment method</td>
<td>Sonnet</td>
</tr>
<tr>
<td>PiCasso</td>
<td>Moment method/genetic</td>
<td>EMAG</td>
</tr>
<tr>
<td>FEKO</td>
<td>Moment method</td>
<td>EMSS</td>
</tr>
<tr>
<td>PCAAD</td>
<td>Cavity Model</td>
<td>Antenna Design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Associates, Inc.</td>
</tr>
<tr>
<td>Micropatch</td>
<td>Segmentation</td>
<td>Microstrip</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Designs, Inc.</td>
</tr>
<tr>
<td>Microwave Studio (MAFIA)</td>
<td>FDTD</td>
<td>CST</td>
</tr>
<tr>
<td>Fidelity</td>
<td>FDTD</td>
<td>Zeland</td>
</tr>
<tr>
<td>HFSS</td>
<td>Finite element</td>
<td>Ansoft</td>
</tr>
</tbody>
</table>

Layout

- Translating circuit schematics and simulated antenna structures into transistors and interconnecting metal/vias
 - Tool: Cadence Virtuoso

- Ansoft HFSS

- Cadence Virtuoso
Foundry Layout Constraints

- Foundry will provide a “process design kit” (PDK)
 - Contains materials used, thicknesses, and “design rules”
- Design Rules ensure layout is fabrication-compatible
 - Ex: Min/Max spacing of co-planar metal lines or transistors
 - Provides protection for your chip and for neighboring chips
- **Important** to perform Design Rules Check (DRC) before submitting layout to foundry
 - DRC be done with Mentor’s Calibre and integrated with Virtuoso
 - DRC dictates antenna/RF designs
 - Some design rule errors can be “waived”
 - Re-simulation may be necessary!
Layout vs. Schematic (LVS)

- Simply passing DRC is not enough
 - DRC only guarantees foundry can fabricate the chip, however unknown whether chip will perform as intended
- Layout vs. Schematic (LVS) performs checks between layout and circuit schematic
 - Helps identify missed connections, short/open circuits, etc.
 - LVS can be performed with Mentor’s Calibre and integrated into Virtuoso
- Passing both DRC and LVS provides confidence for proper layout and successful tape-out
Notable Design Rules/Precautions

- Designer must know foundry constraints
- Metal-Percentage Rule
 - Each metal layer must occupy a minimum percentage of entire design area
 - Ex: At least 35% of IC area (max width*max length) must contain M1, M2, M3, etc.
- Wide-Metal Rule
 - If a metal area is larger/wider than a threshold, small slots (holes) must be inserted
 - Ex: If M1 occupies an area 50μm x 50μm, then a small slot of at least 10μm² will need to be placed in that area. The slot density must be at least 3%.
Notable Design Rules/Precautions

- Pads either for probing or bond wires will require as many metal layers as possible with stacked vias for mechanical stability.
- Probe manufacturers may have additional rules for pad creation
 - Ex: Pad sizes and placement for successful probing
 - Smaller pad sizes = less parasitic capacitance = easier to de-embed parasitic from device under test (DUT)

- Pad rings located around the perimeter of the chip may alter antenna designs/patterns
- Scribe lines located beyond the pad rings may also alter antenna performance
Notable Design Rules/Precautions

- Slots (holes) added in metal (satisfies design rules)
- Passivation layer opening for probing and bond wires

Top Metal M1 Silicon
Example Layout at UT-Austin

- Collaborative die among several faculty/students
- 6 Projects on 5mm x 5mm
- Includes UT’s first ever on-chip 60 GHz antennas!
- Our quadrant – 2.5mm x 2.5mm
Example Layout at UT-Austin

- Contains 2 on-chip antennas for 60GHz operation
- An array of transmission lines (CPW/MS) used for measurement and fine tuning of simulation parameters @ mmWave/THz (ex: \(\varepsilon_r, \sigma, \delta \))
CPW

Before

After

Example

Figure 9.21 A grounded co-planar waveguide (GCPW) structure implemented in a typical IC process utilizes an array of vias to connect the co-planar ground with the lower ground plane layer.

helps to satisfy design rules
Die Photos
Die Photos
Die Photos
Die Photos
Measurement

- Currently taking measurements of T-Lines
- Building/Testing antenna measurement system to verify simulations
 - Radiation pattern measurements
 - Gain (radiation efficiency) measurement
- Open transmission line (co-planar waveguide)
- Varying SiO2 permittivity from 3 to 4
- Varying SiO2 loss tangent from .0001 to .01
Receiving Horn Antenna

5mm x 5mm IC Antenna

60GHz Wafer Probe

to VNA

θ

ϕ
- Direct Probing of T-Lines
- Cascade Microtech 67GHz Probes
 - Ground-Signal-Ground (GSG)
Optimized Dipole Antenna

Antenna fabricated on Metal 6 (top of silicon dioxide layer)

Optimized Yagi Antenna

Left plot is elevation, right is azimuth

Conclusion

- Tremendous spectrum available at millimeter-wave/terahertz radio frequencies
- Emerging low-cost, low-power mainstream CMOS fabrication
- Need to understand: circuits and antennas
- Applications are numerous: vehicular radar, short-range high-speed data transfers
Conclusion

- Electromagnetic simulators require accurate frequency dependent materials to design mmWave RFICs

- Design rules and foundry constraints should be checked regularly during the design process

- UT-Austin’s Wireless Networking and Communications Group is actively researching mmWave RFICs
References

Thank You!

This research is funded by the US Army Research Laboratory under contract number W011F-08-1-0438, and the WNCG Industrial Affiliates program.