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Agenda
• The Airborne Clutter Environment
• Space-Time Adaptive Processing

– What is it? 
• Natural Evolution of Radar Signal Process

– Why Put the Adaptive in Space-Time Processing?
• Short Answer - Realities, Imperfect Knowledge, 

Uncertainties and Imperfections
• Simple case in point is open loop DPCA

– How is it Implemented?
• Limiting Factors List & Examples
• Current Investigations to Mitigate Limiting 

Factors
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Simple Example of target and interference environment as 
observed by a Pulsed-Doppler Airborne Intercept Radar

TargetTarget

NoiseNoise

Range Bin Containing Target PeakRange Bin Containing Target PeakMain Beam 
Clutter

Main Beam 
Clutter

Receiver 
Blanking

Receiver 
Blanking

PRI

PRF
Ideal clutter 
rejection filter

Slow Moving Targets require Fast Transition from Stopband to PassbandSlow Moving Targets require Fast Transition from Stopband to Passband
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Space-Time Adaptive Processing is a 
Natural Evolution of Radar Signal Process

• Time Only Processing - Single Channel 
– MTI Processing
– Pulse Doppler Processing

• Space Only Processing - Multiple Channel 
– Jammer Cancellation

• Space-Time Processing (Non-Adaptive)
– Displaced Phase Center Array (DPCA) Processing
– Simultaneous DPCA

• Space-Time Adaptive Processing
– Segmented Antenna Co-Aligned with Velocity Vector
– Arbitrary Antenna Manifolding and Alignment
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Simple MTI Radar (Time) Processing
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Pulse Doppler Processing Of Moving Targets (Time)
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JammerJammer NullingNulling (Space)(Space)
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Range, Doppler & Angle of Ground ClutterRange, Doppler & Angle of Ground Clutter

- 0.70 Vp

0.55 Vp

0.40Vp

0.25 Vp

0.10Vp

Vp

Doppler
Contour

Range
Contour

0.70 Vp

Clutter Doppler Is Determined By The Look 
Angle From The Radar Platform Velocity

Clutter Doppler Is Determined By The Look 
Angle From The Radar Platform Velocity
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Range, Doppler & Angle of Moving TargetsRange, Doppler & Angle of Moving Targets

- 0.70 Vp

0.55 Vp

0.40Vp

0.25 Vp

0.10Vp

Vp

Doppler
Contour

Range
Contour

0.70 Vp

• Clutter Doppler Is Determined By The Look Angle From 
The Radar Platform Velocity

• Target Returns Do Not Originate From The Same 
Angle of Arrival As Directly Competing Clutter at 
same Doppler as Target  (Exo-Clutter)

• Returns From Slow Moving Or Turning Targets Must 
Compete With Mainlobe Clutter (Endo-Clutter)

• Clutter Doppler Is Determined By The Look Angle From 
The Radar Platform Velocity

• Target Returns Do Not Originate From The Same 
Angle of Arrival As Directly Competing Clutter at 
same Doppler as Target  (Exo-Clutter)

• Returns From Slow Moving Or Turning Targets Must 
Compete With Mainlobe Clutter (Endo-Clutter)
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Simple Example of target and interference environment as 
observed by a Pulsed-Doppler Airborne Intercept Radar

TargetTarget

NoiseNoise

Range Bin Containing Target PeakRange Bin Containing Target PeakMain Beam 
Clutter

Main Beam 
Clutter

Receiver 
Blanking

Receiver 
Blanking

PRI

PRF
Ideal clutter 
rejection filter

More Clutter Rejection Required With Slower TargetMore Clutter Rejection Required With Slower Target
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2 Dimensional Space2 Dimensional Space--Time FilteringTime Filtering
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Full Aperture TX &
Segmented RX Aperture DPCA
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1. Delay Line Cancellation 
Processing

2. Cancels clutter from all angles 
and Dopplers

3. PRF tied to Aircraft Velocity
4. Matched Sub-Arrays & 

Channels
5. Constraints on Antenna 

mounting & Aircraft Motion
6. Not satisfying 3 & 4 Degrades 

Performance
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Why Adaptive Processing 

• DPCA & Non-Adaptive Space-Time Processing 
Implementations are limited by:
– Channel Matching (both spatial and temporal)
– Errors in the knowledge of Hardware Characteristics
– Trajectories/Antenna Mounting Limitations

• Nose Mounted
• CRAB Angles

• Adaptive Processing
– Dynamic Compensation Technique
– Flexible in that it automatically adjusts to the interference 

environment
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Adaptive Processing Math
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Clutter Covariance Estimation
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Fundamental Issues in Realizing STAP Potential (Ri)



TechnicalPapers/AESS/
Presentation.ppt
21 Oct 2004  Page 18 Copyright © 2004, CAE Soft Corp.

Fundamental Issues in Realizing STAP Potential
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STAP Integration Into Radar 
Signal Processing

Element-Space
Pre-Doppler

Element-Space
Post-Doppler

(Factored)

Beam-Space
Pre-Doppler
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Space-Time
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Bob Hancock
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Limiting Factors we will demonstrate
• Spatial Mismatch between antenna phase centers
• Non-Homogeneity

– Terrain Shadowing
– Discretes
– Backscatter Variations

• Estimation
– Moving Window vs Global
– Movers in training set

• Under Nulling / Over Nulling
• Internal clutter motion
• Mis-alignment between Antenna Center Line and Velocity 

Vector, i.e. Crabbing
• Range Ambiguities
• Non Planar Antenna Arrays

– Conformal
– Deformation
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Space-Time (DPCA) Example 
with

Airframe Near Field Scattering
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DPCA + Doppler Processing

PRI

ANTENNA

DELAY

+

DP

SUBTRACTION

DOPPLER PROCESSOR

DIGITAL BEAMFORMER DBF

SA1

PRI

+

DP

SA2

PRI

+

DP

SA3
...

PRI

SA4

...
-

-
-

...

PRI = 1260 Microseconds
Satifies DPCA Condition:
       PRI * VEL = SubarraySpacing / 2

VEL = 241.912 meters/second

0.6096 m 0.6096 m 0.6096 m 0.6096 m

Outputs shown Here

Output shown Here
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Diagram illustrating the relationship between the current
J-Stars Array and the 16 Subaperture Array used in the Example

SA 
# 1

2 3 4  5 6 7 8 9 10 11 12  13 14 15 16

-13.2 in. 137.4 in.

FRONT EDGE OF ENGINE NACELLE @ 218 IN.

-102.6 
in.

J-STARS Antenna Envelope 16 Sub-Aperture Antenna Array
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Far-Field from Column Subarrays (Slats) at Front and Rear of Array

Slat # 1Slat # 1

Slat # 256Slat # 256

Co-PolCo-Pol X-PolX-Pol

Vertical CutVertical Cut

Horizontal CutHorizontal Cut

Scattering from 
engine nacelle

Scattering from 
engine nacelle
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Tx Antenna Patterns at Az = 0 and 15 Deg.
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Rx Patterns for Subarrays 1, 8, 16 at Az = 0 and 15 Deg.

Subarray 1Subarray 1 Subarray 8Subarray 8 Subarray 16Subarray 16
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Scatterer Field after Prescan, Azimuth = 15 Deg.

Backlobe
Region

MainBeam 
& Normal Sidelobes

Elevated Sidelobes 
due to Scattering 
from Airframe
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Conventional Doppler Processor Output, Azimuth = 15 Deg.

Channel 1Channel 1

Channel 8Channel 8

Channel 16Channel 16

Main Beam ClutterMain Beam Clutter

Main Beam ClutterMain Beam Clutter

Main Beam ClutterMain Beam Clutter

Altitude LineAltitude Line
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Doppler Processing + Digital Beamforming,
Azimuth = 15 Deg.

TargetTarget

Main Beam ClutterMain Beam Clutter

Altitude LineAltitude Line
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DPCA + Doppler Processing, Azimuth = 15 Deg.

Channels 1 & 3Channels 1 & 3

Channels 8 & 9Channels 8 & 9

Channels 15 & 16Channels 15 & 16

TargetTarget

TargetTarget

Main Beam ClutterMain Beam Clutter

Altitude LineAltitude Line
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DPCA + Doppler Processing + Digital Beamforming, 
Azimuth = 15 Deg.

TargetTarget

Main Beam ClutterMain Beam Clutter

Altitude LineAltitude Line
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Clutter Analytic (Clairvoyant) Covariance Matrix 
Calculation Technique
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Analytic Covariance Matrix Calculation

Homogeneous Clutter in Low Fidelity Meta-Model
Heterogeneous Clutter in Higher Fidelity
Homogeneous Clutter in Low Fidelity Meta-Model
Heterogeneous Clutter in Higher Fidelity

Meta V4

Meta V4
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kth clutter patch

H2O

ICM Can Vary From 
Region to Region 
Depending On 
Clutter Type

ICM Can Vary From 
Region to Region 
Depending On 
Clutter Type
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Adaptive Processing Metrics
• GMTI Requires Robust MDV Performance
• Moving Platform – Clutter Coupled in Angle and Doppler – Use STAP
• Adaptive Matched Filter With Known Covariance Matrix R
• Metric Used: SINR Loss
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SINR Loss – Performance of STAP Filter Relative to Interference Free CaseSINR Loss – Performance of STAP Filter Relative to Interference Free Case
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SINR Loss, 16 Channels, 4 Long Taps
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Eigen-Decomposition

Noise Level

Noise Level

Noise Level
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Example of Heterogeneous Clutter 
Background

• Radar positioned just on left border of plot, ½ way down plot
• Looking out over Great Salt Lake towards SLC and Wasatch Mt. Range

Clutter Power Land Cover

20 KM20 KM

60 KM60 KM
Range Rings are Approximately 10 KM apartRange Rings are Approximately 10 KM apart

Very Little Main 
Beam Clutter due 
to Shadowing

Very Little Main 
Beam Clutter due 
to Shadowing

Very Strong 
Returns due to 
Mountains

Very Strong 
Returns due to 
Mountains
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Appearance of Heterogeneous Backgrounds in 
High and Medium Fidelities

1 2k…

1k

…

…

2k

K

4k
3k

ik

1+ik

…

SINR Loss

Range - Doppler

ICM Can Vary From 
Region to Region 
Depending On Clutter Type

ICM Can Vary From 
Region to Region 
Depending On Clutter Type

High Fidelity Waveform Gen.
&  Doppler Processing

Analytic Covariance Gen 
& Adaption
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Impact of Real-World Effects
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Additional SINR Loss due to errors in 
estimation process

Medium CNR = 20 dB region was used 
to estimate STAP weights that were 
applied to High CNR = 40 dB region

Medium CNR = 20 dB region was used 
to estimate STAP weights that were 
applied to High CNR = 40 dB region

Under-NullingUnder-Nulling Over-NullingOver-Nulling

High CNR = 40 dB region was used to 
estimate STAP weights that were 
applied to Low CNR = 10 dB region

High CNR = 40 dB region was used to 
estimate STAP weights that were 
applied to Low CNR = 10 dB region

Blue curve is the 
optimal solution

Blue curve is the 
optimal solutionBlue curve is the 

optimal solution
Blue curve is the 
optimal solution
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SINR Loss without and with Internal Clutter Motion

No ICMNo ICM With ICMWith ICM
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Doppler Warping due to earth’s rotation
Doppler Shift Varies With RangeDoppler Shift Varies With RangeLOS
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Space Radar Systems
•Present a new set of problems due to weight and packaging constraints:

•The array must be folded up to fit into the launch vehicle shroud

•On orbit the array is unfolded and attached to a truss structure

•The resulting array will not be flat to within λ/20 because distortions will occur 
which cannot be controlled by mechanical means alone.  These may be due to:

–Static distortions due to deployment errors

–Dynamic distortions due to station keeping, heating, etc.  The dynamic distortions must 
be sensed at a temporal rate higher than the natural frequency of the structure and 
spatially at a rate greater than the highest order mode of significance.

•A robust realtime metrology scheme coupled with dynamic electronic 
compensation is required to live with expected mechanical deformations.

X 

Y2 Meters

1.5 Meters

Total Array Size: 50 x 2 Meters
Center Freq:  1.25 GHZ
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Volumetric patterns with no errors, 
out of plane,  and orientation errors 
Pk Directive Gain =  41.7 dBI

RMS Sidelobes =  - 55.7 dBML

Pk Directive Gain =  41.7 dBI

RMS Sidelobes =  - 55.7 dBML
Pk Directive Gain =  41.7 dBI

RMS Sidelobes =  - 55.5 dBML

Pk Directive Gain =  41.7 dBI

RMS Sidelobes =  - 55.5 dBML

Pk Directive Gain =  41.6 dBI

RMS Sidelobes =  - 51.8 dBML

Pk Directive Gain =  41.6 dBI

RMS Sidelobes =  - 51.8 dBML
Pk Directive Gain =  41.6 dBI

RMS Sidelobes =  - 54.8 dBML

Pk Directive Gain =  41.6 dBI

RMS Sidelobes =  - 54.8 dBML

No ErrorsNo Errors Zerror = 1 mm rmsZerror = 1 mm rms

Zerror = 5 mm rmsZerror = 5 mm rms Orient Angle Error 
= 0.2 deg rms

Orient Angle Error 
= 0.2 deg rms

L-Band

50m x 2.5m array

32 panels

L-Band

50m x 2.5m array

32 panels
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Azimuthal Cuts to show the Effect of some Errors
No Errors

Pk Directive Gain =  41.7 dBI

RMS Sidelobes =  - 55.7 dBML

No Errors

Pk Directive Gain =  41.7 dBI

RMS Sidelobes =  - 55.7 dBML

σZ = 1 mm rms
Pk Directive Gain =  41.7 dBI

RMS Sidelobes =  - 55.5 dBML

σZ = 1 mm rms
Pk Directive Gain =  41.7 dBI

RMS Sidelobes =  - 55.5 dBML

σP = 0.2 deg rms
Pk Directive Gain =  41.6 dBI

RMS Sidelobes =  - 54.8 dBML

σP = 0.2 deg rms
Pk Directive Gain =  41.6 dBI

RMS Sidelobes =  - 54.8 dBML

σZ = 5 mm rms
Pk Directive Gain =  41.6 dBI

RMS Sidelobes =  - 51.8 dBML

σZ = 5 mm rms
Pk Directive Gain =  41.6 dBI

RMS Sidelobes =  - 51.8 dBML
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Antenna Performance & SINR Loss changes with 
parabolic bending of array truss (uncompensated)

Zmax = 00 mmZmax = 00 mm

Zmax = 24 mmZmax = 24 mm

Zmax = 60 mmZmax = 60 mm

Azimuthal cut thru patternAzimuthal cut thru pattern SINR LossSINR Loss
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Ending
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Current Investigations to 
Mitigate Limiting Factors

• Knowledge-Based Approaches
– Select Training Set
– Mix Adaptive and Non-Adaptive 

Techniques
• Techniques that require less Sample 

Support in Training Set
• Orthogonal Waveforms
• Many Others


	Space-Time Adaptive Processing (STAP)Some Performance Limiting Factors
	Agenda
	Simple Example of target and interference environment as observed by a Pulsed-Doppler Airborne Intercept Radar
	Space-Time Adaptive Processing is a Natural Evolution of Radar Signal Process
	Simple MTI Radar (Time) Processing
	Pulse Doppler Processing Of Moving Targets (Time)
	Jammer Nulling (Space)
	Range, Doppler & Angle of Ground Clutter
	Range, Doppler & Angle of Moving Targets
	Simple Example of target and interference environment as observed by a Pulsed-Doppler Airborne Intercept Radar
	How Space relates to Time (Doppler) in Space-Time Processing (Co-Aligned Array)
	2 Dimensional Space-Time Filtering
	Full Aperture TX &Segmented RX Aperture DPCA
	Why Adaptive Processing
	Adaptive Processing Math
	Clutter Covariance Estimation
	Fundamental Issues in Realizing STAP Potential (Ri)
	Fundamental Issues in Realizing STAP Potential
	STAP Integration Into Radar Signal Processing
	Bob Hancock
	Limiting Factors we will demonstrate
	Space-Time (DPCA) Example with Airframe Near Field Scattering
	DPCA + Doppler Processing
	Diagram illustrating the relationship between the currentJ-Stars Array and the 16 Subaperture Array used in the Example
	Far-Field from Column Subarrays (Slats) at Front and Rear of Array
	Tx Antenna Patterns at Az = 0 and 15 Deg.
	Rx Patterns for Subarrays 1, 8, 16 at Az = 0 and 15 Deg.
	Scatterer Field after Prescan, Azimuth = 15 Deg.
	Conventional Doppler Processor Output, Azimuth = 15 Deg.
	Doppler Processing + Digital Beamforming,Azimuth = 15 Deg.
	DPCA + Doppler Processing, Azimuth = 15 Deg.
	DPCA + Doppler Processing + Digital Beamforming, Azimuth = 15 Deg.
	Clutter Analytic (Clairvoyant) Covariance Matrix Calculation Technique
	Adaptive Processing Metrics
	SINR Loss, 16 Channels, 4 Long Taps
	Eigen-Decomposition
	Example of Heterogeneous Clutter Background
	Appearance of Heterogeneous Backgrounds in High and Medium Fidelities
	Impact of Real-World Effects
	Additional SINR Loss due to errors in estimation process
	SINR Loss without and with Internal Clutter Motion
	Doppler Warping due to earth’s rotation
	Space Radar Systems
	Volumetric patterns with no errors, out of plane,  and orientation errors
	Azimuthal Cuts to show the Effect of some Errors
	Antenna Performance & SINR Loss changes with parabolic bending of array truss (uncompensated)
	Ending
	Current Investigations to Mitigate Limiting Factors

		2004-10-27T09:46:42-0500
	Robert J. Hancock
	I am the author of this document




