Space-Time Adaptive Processing (STAP) Some Performance Limiting Factors

Presented to IEEE AESS 26 October 2004

Dr. Sidney W. Theis (sidtheis@caesoft.biz) Robert J. Hancock (bob@caesoft.biz)

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 1

Agenda

- The Airborne Clutter Environment
- Space-Time Adaptive Processing
 - What is it?
 - Natural Evolution of Radar Signal Process
 - Why Put the Adaptive in Space-Time Processing?
 - Short Answer Realities, Imperfect Knowledge, Uncertainties and Imperfections
 - Simple case in point is open loop DPCA
 - How is it Implemented?
- Limiting Factors List & Examples
- Current Investigations to Mitigate Limiting Factors

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 2

Simple Example of target and interference environment as observed by a Pulsed-Doppler Airborne Intercept Radar

Slow Moving Targets require Fast Transition from Stopband to Passband

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 3

Space-Time Adaptive Processing is a Natural Evolution of Radar Signal Process

- Time Only Processing Single Channel
 - MTI Processing
 - Pulse Doppler Processing
- Space Only Processing Multiple Channel
 - Jammer Cancellation
- Space-Time Processing (Non-Adaptive)
 - Displaced Phase Center Array (DPCA) Processing
 - Simultaneous DPCA
- Space-Time Adaptive Processing
 - Segmented Antenna Co-Aligned with Velocity Vector
 - Arbitrary Antenna Manifolding and Alignment

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 4

Simple MTI Radar (Time) Processing

Pulse Doppler Processing Of Moving Targets (Time)

Jammer Nulling (Space)

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 7

Range, Doppler & Angle of Ground Clutter

Range, Doppler & Angle of Moving Targets

Simple Example of target and interference environment as observed by a Pulsed-Doppler Airborne Intercept Radar

More Clutter Rejection Required With Slower Target

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 10

How Space relates to Time (Doppler) in Space-Time Processing (Co-Aligned Array)

2 Dimensional Space-Time Filtering

2D Angle-Doppler Spectrum

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 12

Full Aperture TX & Segmented RX Aperture DPCA

- 1. Delay Line Cancellation Processing
- 2. Cancels clutter from all angles and Dopplers
- 3. PRF tied to Aircraft Velocity
- 4. Matched Sub-Arrays & Channels
- 5. Constraints on Antenna mounting & Aircraft Motion
- 6. Not satisfying 3 & 4 Degrades Performance

Pulse	Phase Center Displacement		
	TX	RX	Total
Ν	0	V*Tr+d/2	V*Tr+d/2
N+1	d/2	V*Tr	V*Tr+d/2

Normalized Doppler = $\overline{f}_d = f_d / PRF = f_d PRI = \frac{2V_p \times PRI}{\lambda} \sin \theta_{clutter}$

$$\overline{f}_{d} = \frac{2V_{p} \times PRI}{\lambda} \left(\frac{\lambda}{d}\right) \left(\frac{d}{\lambda}\right) \sin \theta_{clutter} = \frac{2V_{p} \times PRI}{d} \left(\frac{d}{\lambda} \sin \theta_{clutter}\right)$$

 $\overline{\theta} = \frac{d}{\lambda} \sin(\theta_{clutter}) \text{ (Spatial Frequency/Normalized Angle)}$ $\beta = \frac{2V \times PRI}{d} \text{ (Slope of the Clutter Ridge = Spatial/Doppler Frequency)}$

$$\overline{f}_d = \beta \overline{\theta}$$

($\beta = 1$ for DPCA); $\frac{2V \times PRI}{d} = 1$; $PRF = \frac{2V}{d}$
Phase Center Displacement during PRI :

Displacement =
$$V * Time = V * 1 / PRF = V * \frac{d}{2V} = \frac{d}{2}$$

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 13

Why Adaptive Processing

- DPCA & Non-Adaptive Space-Time Processing Implementations are limited by:
 - Channel Matching (both spatial and temporal)
 - Errors in the knowledge of Hardware Characteristics
 - Trajectories/Antenna Mounting Limitations
 - Nose Mounted
 - CRAB Angles
- Adaptive Processing
 - Dynamic Compensation Technique
 - Flexible in that it automatically adjusts to the interference environment

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 14

Adaptive Processing Math

Clutter Covariance Estimation

 In practice, the interference covariance matrix is estimated from auxiliary data obtained from surrounding range bins

- Stationarity/homogeneity assumption required w.r.t. range

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 16

Copyright © 2004, CAE Soft Corp.

Corp.

CAE

Fundamental Issues in Realizing STAP Potential (R_i)

- Heterogeneous Clutter
 - Inhomogeneous land clutter often violates "stationarity" assumption required for covariance estimation
 - Clutter undernulling, poor MDV
- Large Clutter Discretes
 - Land clutter is often "spiky"
 - Increased false alarms
- Air/Ground Traffic Induced Distortions
 - Strong presence of background traffic in training region can cause target cancellation
 - Reduced MDV (e.g., MCARM data set)
- Joint Hot & Cold Clutter Cancellation
 - 3D nature of problem exacerbates adaptive weights
 - Hot Clutter/TSI

Dense Airborne/Ground Traffic

Inhomogeneous Terrain/Clutter

Large Discretes/Urban Clutter

Presentation.ppt 21 Oct 2004 Page 17

Fundamental Issues in Realizing STAP Potential

- Interference "Spreading" Mechanisms
 - Internal clutter motion (ICM)
 - Clutter scintillation
 - Diffuse multipath
 - Transmitter instabilities
 - Antenna "jitter"
 - Bandwidth (dispersion)
 - Antenna "crab"
 - etc.
- Less useable angle-Doppler
 - Clutter is spread in angle and Doppler

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 18

STAP Integration Into Radar Signal Processing

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 19

Bob Hancock

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 20

Limiting Factors we will demonstrate

- Spatial Mismatch between antenna phase centers
- Non-Homogeneity
 - Terrain Shadowing
 - Discretes
 - Backscatter Variations
- Estimation
 - Moving Window vs Global
 - Movers in training set
- Under Nulling / Over Nulling
- Internal clutter motion
- Mis-alignment between Antenna Center Line and Velocity Vector, i.e. Crabbing
- Range Ambiguities
- Non Planar Antenna Arrays
 - Conformal
 - Deformation

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 21

Space-Time (DPCA) Example with Airframe Near Field Scattering

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 22

DPCA + Doppler Processing

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 23

Diagram illustrating the relationship between the current J-Stars Array and the 16 Subaperture Array used in the Example

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 24

Copyright © 2004, CAE Soft Corp.

CAE

Corp.

Far-Field from Column Subarrays (Slats) at Front and Rear of Array

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 25

Tx Antenna Patterns at Az = 0 and 15 Deg.

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 26

Rx Patterns for Subarrays 1, 8, 16 at Az = 0 and 15 Deg.

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 27

Scatterer Field after Prescan, Azimuth = 15 Deg.

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 28

Conventional Doppler Processor Output, Azimuth = 15 Deg.

ZI UCI ZUU4 Faye Z9

Doppler Processing + Digital Beamforming, Azimuth = 15 Deg.

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 30

DPCA + Doppler Processing, Azimuth = 15 Deg.

DPCA + Doppler Processing + Digital Beamforming, Azimuth = 15 Deg.

Clutter Analytic (Clairvoyant) Covariance Matrix Calculation Technique

Homogeneous Clutter in Low Fidelity Meta-Model Heterogeneous Clutter in Higher Fidelity

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 33

Copyright © 2004, CAE Soft Corp.

Spatial Vector

$$\mathbf{a}_{k} = \exp(j2\pi(0:N-1)\frac{d}{\lambda}\sin(\phi_{k})\cos(\theta_{k}))$$

Space Time Vector $\mathbf{v}_k = (\mathbf{b}_k \otimes \mathbf{a}_k) \in C^{NM \times 1}$

Analytic Covariance Matrix Calculation

$$\mathbf{R} = \sum_{k=1}^{K} \xi_k^2 \mathbf{v}_k \mathbf{v}_k^H$$

Adaptive Processing Metrics

- GMTI Requires Robust MDV Performance
- Moving Platform Clutter Coupled in Angle and Doppler Use STAP
- Adaptive Matched Filter With Known Covariance Matrix R

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 34

Copyright © 2004, CAE Soft Corp.

CAE

Corp.

21 Oct 2004 Page 35

21 Oct 2004 Page 36

Copyright © 2004, CAE Soft Corp.

Example of Heterogeneous Clutter Background

- Radar positioned just on left border of plot, ½ way down plot
- Looking out over Great Salt Lake towards SLC and Wasatch Mt. Range

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 37

Appearance of Heterogeneous Backgrounds in High and Medium Fidelities

Presentation.ppt 21 Oct 2004 Page 38

Impact of Real-World Effects

- When estimating covariance over large sample support, range cells with strong CNR dominant
 - Strong CNR cells also have high rank (e.g., Doppler spread)
 - Results in severe overnulling and poor MDV
- Localized training required to track "true" clutter rank

Requires Minimal Sample Support Solution

* Data courtesy of Information Systems Laboratories, Vienna, VA 🛐

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 39

Additional SINR Loss due to errors in estimation process

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 40

SINR Loss without and with Internal Clutter Motion

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 41

Doppler Warping due to earth's rotation

Space Radar Systems

•Present a new set of problems due to weight and packaging constraints:

•The array must be folded up to fit into the launch vehicle shroud

•On orbit the array is unfolded and attached to a truss structure

•The resulting array will not be flat to within $\lambda/20$ because distortions will occur which cannot be controlled by mechanical means alone. These may be due to:

-Static distortions due to deployment errors

-Dynamic distortions due to station keeping, heating, etc. The dynamic distortions must be sensed at a temporal rate higher than the natural frequency of the structure and spatially at a rate greater than the highest order mode of significance.

•A robust realtime metrology scheme coupled with dynamic electronic compensation is required to live with expected mechanical deformations.

Volumetric patterns with no errors, out of plane, and orientation errors

L-Band

50m x 2.5m array

21 Oct 2004 Page 44

Azimuthal Cuts to show the Effect of some Errors

21 Oct 2004 Page 45

Antenna Performance & SINR Loss changes with parabolic bending of array truss (uncompensated)

Ending

TechnicalPapers/AESS/ Presentation.ppt 21 Oct 2004 Page 47

Current Investigations to Mitigate Limiting Factors

- Knowledge-Based Approaches
 - Select Training Set
 - Mix Adaptive and Non-Adaptive Techniques
- Techniques that require less Sample Support in Training Set
- Orthogonal Waveforms
- Many Others

