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Preface

Many problems in adaptive filtering are nonlinear and non-Gaussian

Of the many methods that have been proposed in the literature for
solving such problems, particle filtering (PF) has become one of the
most popular

In this talk the basics of PF are revisited and a review of some of its
most important implementations is discussed
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Introduction

Introducing PF

Some of the most important problems in signal processing require
sequential processing of data

The data describe a system that is mathematically represented by
equations, which model the system’s “random” evolution with time

The system is defined by its state variables of which some are
dynamic and some are constant

A typical assumption about the state is that it is Markovian

The state is not directly observable and we acquire measurements
which are degraded by noise and obtained sequentially in time
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Introduction

Goal

The main objective of sequential signal processing is the recursive
estimation of the state of the system based on the available
measurements
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The methods that are developed for estimation of the state are called
filters

Estimates of the state in the past or prediction of its values in the
future may also be of interest
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Introduction

Optimal filtering methods

Optimal filtering methods for sequential signal processing are based
on analytical updates of the densities of interest

↓

Integration is a key operation

Closed form solutions are possible in a very small number of situations

Gaussian noise
and

linear functions

→ Optimal estimation with Kalman filtering
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Introduction

Suboptimal filtering methods

Non-Gaussian noise
or

nonlinear functions

→ Numerical techniques

Extended Kalman filter [Anderson & Moore, 1979]

Gaussian sum filters [Alspach & Sorenson, 1972]

Methods based on approximations of the first two moments of the
densities [Masreliez, 1975; West, 1985]

Evaluation of densities over grids [Kitagawa, 1987; Sorenson, 1988]

The unscented Kalman filter [Julier et al., 2000]

The Particle Filtering Methodology in Signal Processing Petar M. Djurić 8 / 70



Introduction

Suboptimal filtering methods

Non-Gaussian noise
or

nonlinear functions

→ Numerical techniques

Extended Kalman filter [Anderson & Moore, 1979]

Gaussian sum filters [Alspach & Sorenson, 1972]

Methods based on approximations of the first two moments of the
densities [Masreliez, 1975; West, 1985]

Evaluation of densities over grids [Kitagawa, 1987; Sorenson, 1988]

The unscented Kalman filter [Julier et al., 2000]

The Particle Filtering Methodology in Signal Processing Petar M. Djurić 8 / 70
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Introduction

PF methodology

PF is very similar in spirit as the one that exploits deterministic grids

However, PF uses random grids, which means that the location of the
nodes vary with time in a random way

At one time instant the grid is composed of one set of nodes, and at
the next time instant, this set of nodes is completely different

The nodes are called particles, and they have assigned weights, which
can be interpreted as probability masses

The particles and the weights form a discrete random measure, which
is used to approximate the densities of interest

In the generation of particles, each particle has a “parent”, and the
parent its own parent and so on

Such sequence of particles is called a particle stream
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Introduction

PF philosophy

A challenge in implementing PF is the placement of the nodes of the
grids

The generation of particles should be in regions of the state space
over which the densities carry significant probability masses, avoiding
parts of the state space with negligible probability masses

To that end, one exploits concepts from statistics known as
importance sampling (IS) and sampling-importance-resampling (SIR)

Bayesian theory is applied to the computation of the particle weights

The sequential processing amounts to recursive updating of the
discrete random measure with the arrival of new observations, where
the updates correspond to generation of new particles and
computation of their weights
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Introduction

Some history

The roots of PF were established about fifty years ago with methods
for estimating the mean squared extension of a self-avoiding random
walk on lattice spaces

One of the first applications of the methodology was on the
simulation of chain polymers

The control community produced interesting work on sequential
Monte Carlo integration methods in the sixties and seventies

The popularity of PF in the last fifteen years was triggered by the
application of the SIR filter to tracking problems

The timing (1993) was perfect because it came during a period when
computing power started to become widely available

Ever since, the amount of work on particle filtering has proliferated
and many important advances have been made
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Introduction

Why PF?

One driving force for the advancement of PF is the ever increasing
range of its applications

PF can be applied to any state space model where the likelihood and
the prior are computable up to proportionality constants

Its accuracy depends on how well we generate the particles and how
many particles we use to represent the random measure

It is well known that PF is computationally intensive which is an issue
because in sequential signal processing the required operations must
be completed before a deadline

However, PF allows for significant parallelization of its operations
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Introduction

Applications of PF

Target tracking, positioning and navigation

Robotics

Communications (detection in flat fading, equalization and
synchronization)

Speech processing for speech enhancement

Seismic signal processing for blind deconvolution

System engineering for fault detection

Computer vision

Econometrics
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Motivation for use of particle filtering

Representation of dynamic systems

Many problems can be stated in terms of dynamic systems

1 State equation: hidden random signal to be estimated

xt = f (xt−1,ut)

xt signal (state) of interest
f state transition function (possibly nonlinear)
ut state perturbation noise

2 Observation equation: available information

yt = g (xt , vt)

yt observed signal
g measurement function (possibly nonlinear)
vt observation noise
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Motivation for use of particle filtering

Alternative representation of dynamic systems

One can also represent the dynamic system in terms of densities

1 State equation: p (xt |xt−1,θ)

2 Observation equation: p (yt |xt ,ψ)

The form of the density functions depends on:

the functions f (·) and g(·)
the densities of ut and vt

θ ∈ <Lθ

ψ ∈ <Lψ

}
→ Unknown fixed parameter vectors

They can be included in xt as static parameters
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Motivation for use of particle filtering

Important densities

Three densities play a critical role in sequential signal processing

1 Filtering density: p (xt |y1:t), where y1:t = {y1, y2, · · · , yt}

2 Predictive density: p (xt+l |y1:t), where l ≥ 1

3 Smoothing density: p (xt |y1:T ), where T > t and
y1:T = {y1, y2, · · · , yT}
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Motivation for use of particle filtering

Tracking the important densities

Objective: Track the densities by exploiting recursive relationships

1 Filtering density: p (xt |y1:t) from p
(
xt−1|y1:t−1

)
2 Predictive density: p (xt+l |y1:t) from p (xt+l−1|y1:t)

3 Smoothing density: p (xt |y1:T ) from p (xt+1|y1:T )

Complete information about xt is given by these densities

An algorithm that can track these densities exactly is called an
optimal algorithm

In many practical situations, optimal algorithms are impossible to
implement
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Motivation for use of particle filtering

Example: Bearings-only tracking

Consider the tracking of an object based on bearings-only measurements

xt = Gxxt−1 + Guut

where xt = [x1,t x2,t ẋ1,t ẋ2,t ]>

Bearings-only range measurements are obtained by J sensors placed at
known locations in the sensor field

yj ,t = arctan

(
x2,t − l2,j
x1,t − l1,j

)
+ vt(n)

Given the measurements of J sensors, yt = [y1,t y2,t · · · yJ,t ]>, and
the movement model of the object, the goal is to track the object in
time, that is, estimate its position and velocity

In the literature this problem is known as target tracking
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Motivation for use of particle filtering

Example: Bearings-only tracking

Consider the tracking of an object based on bearings-only measurements

xt = Gxxt−1 + Guut

where xt = [x1,t x2,t ẋ1,t ẋ2,t ]>
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Motivation for use of particle filtering

A target in a two-dimensional space and two BOT sensors
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Motivation for use of particle filtering

Recursion for filtering

Suppose that at time t − 1, we know the observations y1:t−1 and the
a posteriori PDF p

(
xt−1|y1:t−1

)
Once yt becomes available, we update the PDF

p
(
xt |y1:t

)
∝ p

(
yt |xt

)
p
(
xt |y1:t−1

)

The predictive density can be obtained as

p
(
xt |y1:t−1

)
=

∫
p
(
xt |xt−1

)
p
(
xt−1|y1:t−1

)
dxt−1

The recursive equation for updating the filtering density becomes

p
(
xt |y1:t

)
∝ p

(
yt |xt

)
×

∫
p
(
xt |xt−1

)
p
(
xt−1|y1:t−1

)
dxt−1
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Motivation for use of particle filtering

Carrying out the filtering recursion

There are at least two problems in carrying out the above recursion

1 Solving the integral in order to obtain the predictive density

2 Combining the likelihood and the predictive density in order to get
the updated filtering density

In many problems the recursive evaluation of the densities of the state
space model cannot be done analytically, which entails that we have
to resort to numerical methods

PF can be employed with elegance and with performance
characterized by high accuracy
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The basic idea
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The basic idea

Approximation of densities by discrete random measures

Densities can be approximated by discrete random measures

χ =
{

x
(m)
t ,w

(m)
t

}M

m=1

The discrete random measure approximates the density by

p(xt |y1:t) ≈
M∑

m=1

w
(m)
t δ

(
xt − x

(m)
t

)

Computations of expectations simplify to summations

E (h(Xt)) =

∫
h(xt)p(xt |y1:t)dxt

⇓

E (h(Xt)) ≈
M∑

m=1

w
(m)
t h

(
x

(m)
t

)
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The basic idea

Example of approximation of densities

Assume that independent particles, x
(m)
t , can be drawn from p(xt |y1:t)

All the particles have the same weight

E (h(Xt)) =

∫
h(xt)p(xt |y1:t)dxt → Ê (h(Xt)) =

1

M

M∑
m=1

h
(

x
(m)
t

)

Ê (·) is an unbiased estimator of the conditional expectation E (·)

If the variance σ2
h <∞ → the variance of Ê (·) is σ2

Ê(h(·))
=

σ2
h

M

As M −→∞

Strong law of large numbers Central limit theorem

Ê (h(Xt))
a.s.−→ E (h(Xt)) Ê (h(Xt))

d−→ N
(

E (h(Xt)),
σ2

h
M

)
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Ê (h(Xt))
a.s.−→ E (h(Xt)) Ê (h(Xt))

d−→ N
(

E (h(Xt)),
σ2

h
M

)
The Particle Filtering Methodology in Signal Processing Petar M. Djurić 25 / 70
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d−→ N
(

E (h(Xt)),
σ2

h
M

)
The Particle Filtering Methodology in Signal Processing Petar M. Djurić 25 / 70



The basic idea

The concept of importance sampling (IS)

In practice, we often cannot draw samples directly from p(xt |y1:t)

Particles are drawn from π(xt) and the estimate of E (h(Xt)) becomes

E (h(Xt)) ≈ 1

M

M∑
m=1

w
∗(m)
t h

(
x

(m)
t

)
or

E (h(Xt)) ≈
M∑

m=1

w
(m)
t h

(
x

(m)
t

)

where w
∗(m)
t =

p(x(m)
t |y1:t)

π(x(m)
t )

and w
(m)
t = w

∗(m)
t∑M

i=1 w
∗(i)
t
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The basic idea

Summary

We use a random measure to approximate p(xt |y1:t) in two steps:

1 Drawing samples from a proposal function π(xt), which needs to be
known only up to a multiplicative constant, i.e.,

x
(m)
t ∼ π(xt), m = 1, 2, · · · ,M

2 Computing the weights of the particles w
(m)
t

Particles

True posterior distribution

Proposal distribution
Weights
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The basic idea

How do we obtain χt from χt−1?

We assume χt−1 =
{

x
(m)
t−1,w

(m)
t−1

}M

m=1
is given.

Step one: Generation of new particles from a proposal function, i.e.,

x
(m)
t ∼ π (xt) , m = 1, · · · ,M

and augmentation of the particle stream x
(m)
0:t−1 with x

(m)
t

Step two: Computation of the particle weights of x
(m)
t ,

m = 1, · · · ,M, i.e.

w
(m)
t ∝ w

(m)
t−1 × update factor, m = 1, · · · ,M

and normalization of the weights
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m = 1, · · · ,M, i.e.

w
(m)
t ∝ w

(m)
t−1 × update factor, m = 1, · · · ,M

and normalization of the weights
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The basic idea

Mathematical formulation of the algorithm

Particle generation
Basis

π (x0:t |y1:t) = π (xt |x0:t−1, y1:t)π
(
x0:t−1|y1:t−1

)
x

(m)
0:t−1 ∼ π

(
x0:t−1|y1:t−1

)
w

(m)
t−1 ∝

p(x(m)
0:t−1|yt−1)

π(x(m)
0:t−1|y1:t−1)

Augmentation of the trajectory x
(m)
0:t−1 with x

(m)
t

x
(m)
t ∼ π

(
xt |x(m)

0:t−1, y1:t

)
, m = 1, · · · ,M

Weight update

w
(m)
t ∝

p
(
yt |x

(m)
t

)
p
(
x(m)

t |x
(m)
t−1

)
π
(
x(m)

t |x
(m)
0:t−1,y1:t

) w
(m)
t−1, m = 1, · · · ,M
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The basic idea

Example: random walk

Consider the state-space model

xt = xt−1 + ut

yt = xt + vt

0 10 20 30 40 50 60 70 80 90 
−12

−10

−8

−6

−4

−2

0

2

time n 

st
at

e 
x(

n)

0 10 20 30 40 50 60 70 80 90 
−12

−10

−8

−6

−4

−2

0

2

time n

ob
se

rv
at

io
n 

y(
n)

t = 0 t = 1 t = 2
xt 1.44 0.89 −1.28
yt 0.96 0.98 −0.51
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The basic idea

Example: SIR for random walk

We choose as a proposal function

π(xt) = p(xt |xt−1)

Therefore, we generate the particles according to

x
(m)
t ∼ p(xt |x (m)

t−1), m = 1, 2, · · · ,M

The update of the weights is done according to

w
(m)
t ∝ p(yt |x (m)

t )w
(m)
t−1
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The basic idea

Example: Step by step SIR for random walk

Initialization: t = 0

x
(m)
0 ∼ N (0, 1) m = 1, 2, . . . ,M.

Note that all the weights are equal
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The basic idea

Example: Step by step SIR for random walk (cont.)

Time instant: t = 1

Generation of particles using the proposal function:

x
(m)
1 ∼ p

(
x1|x (m)

0

)
=

1√
2π

exp

(
−

(x1 − x
(m)
0 )2

2

)
Weight update:

w
(m)
1 ∝ exp

(
−

(y1 − x
(m)
1 )2

2

)
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The basic idea

Example: Step by step SIR for random walk (cont.)

Time instant: t = 2

Generation of particles using the proposal function:

x
(m)
2 ∼ p

(
x2|x (m)

1

)
=

1√
2π

exp

(
−

(x2 − x
(m)
1 )2

2

)
Weight update:

w
(m)
2 ∝ w

(m)
1 exp

(
−

(y2 − x
(m)
2 )2

2

)
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The basic idea

Choice of proposal function

The proposal (importance) function plays a crucial role in the
performance of PF

It is desirable to use easy-to-sample proposal functions that produce
particles with a large enough variance in order to avoid exploration of
the state space in too narrow regions and thereby contributing to
losing the tracks of the state, but not too large to alleviate generation
of too dispersed particles

The support of the proposal functions has to be the same as that of
the targeted distribution
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The basic idea

The optimal importance function

The optimal choice for the importance function is the true posterior
distribution, i.e.,

π
(

xt |x(m)
0:t−1, y1:t

)
= p

(
xt |x(m)

t−1, yt

)
This choice corresponds to the weight calculation

w
(m)
t ∝ w

(m)
t−1p

(
yt |x

(m)
t−1

)
Advantage: this importance function minimizes the variance of the
weights

Disadvantage: it is difficult to sample from p
(

xt |x(m)
t−1, yt

)
and the

update of the weights requires the computation of the integral

p
(

yt | x
(m)
t−1

)
=

∫
p(yt | xt)p

(
xt | x(m)

t−1

)
dxt
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The basic idea

The prior importance function

A popular choice for the importance function is the prior

π
(

xt |x(m)
0:t−1, y1:t

)
= p

(
xt |x(m)

t−1

)
This choice corresponds to the weight calculation

w
(m)
t ∝ w

(m)
t−1 p

(
yt |x

(m)
t

)

Advantage: the computation of the weights is easy

Disadvantage: the generation of the particles is implemented without
the use of observations
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The basic idea

Degeneracy of the random measure: Resampling

In particle filtering the discrete random measure degenerates quickly and
only few particles are assigned meaningful weights
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The basic idea

Resampling

A measure of this degeneracy is the effective particle size

Meff =
M

1 + Var
(

w
∗(m)
t

) → M̂eff =
1∑M

m=1

(
w

(m)
t

)2

Degeneracy is reduced by using good importance sampling functions
and resampling

Resampling eliminates particles with small weights and replicates the
ones with large weights

1/5

1

0
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The basic idea

Pictorial description of resampling
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The basic idea

Flowchart of the SIR algorithm
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Some particle filtering methods

Outline
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Some particle filtering methods

SIR PF

The SIR method is the simplest of all the particle filtering methods

It was named bootstrap filter

It employs the prior density for drawing particles, which implies that
the weights are only proportional to the likelihood of the drawn
particles

The Particle Filtering Methodology in Signal Processing Petar M. Djurić 43 / 70
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Some particle filtering methods

Auxiliary particle filtering (APF)

It explores the state space by using the latest measurements.

Particles are propagated using the prior

Weights of the newly generated particles are evaluated by the latest
measurement

Resampling is applied using the so computed weights

The resampled streams are propagated by generating new particles

The weights of the new particles are computed
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Some particle filtering methods

Auxiliary particle filtering (APF)

It explores the state space by using the latest measurements.

Particles are propagated using the prior

Weights of the newly generated particles are evaluated by the latest
measurement

Resampling is applied using the so computed weights

The resampled streams are propagated by generating new particles

The weights of the new particles are computed

The Particle Filtering Methodology in Signal Processing Petar M. Djurić 44 / 70
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Some particle filtering methods

Unscented particle filtering (UPF)

The method is based on the unscented transform

Rather than linearizing the model, the UKF uses a small deterministic
grid of points (called sigma points) which when propagated through
the system capture accurately both the mean and the covariance

In the context of particle filtering, the UKF computes Gaussians
which are then used as importance functions

Each particle stream has its own UKF
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Some particle filtering methods

Gaussian particle filtering (GPF)

The posterior and the predictive densities are approximated with
Gaussians as is done by the extended Kalman filter (EKF)

However, unlike with the EKF, we do not linearize any of the
nonlinearities in the system

Its advantage over other PF methods is that it does not require
resampling

Another advantage is that the estimation of constant parameters is
not a problem as is the case with other PF methods

Its disadvantage is that if the approximated densities are not
Gaussians, the estimates may be inaccurate and the filter may diverge

An alternative could be the Gaussian sum particle filtering where the
densities in the system are approximated by mixture Gaussians
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Some particle filtering methods

Comparison of methods – Bearings only tracking
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Handling constant parameters

Outline
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Handling constant parameters

Handling constant parameters

The PF methodology was originally devised for the estimation of
dynamic signals rather than static parameters

The most efficient way to address the problem is to integrate out the
unknown parameters when possible, either analytically or by Monte
Carlo procedures

A common feature of these approaches is that they introduce artificial
evolution of the fixed parameters

A recent work introduced a special class of PF called density assisted
particle filters that approximate the filtering density with a predefined
parametric density by generalizing the concepts of Gaussian particle
filters and Gaussian sum particle filters

These new filters can cope with constant parameters more naturally
than previously proposed methods
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particle filters that approximate the filtering density with a predefined
parametric density by generalizing the concepts of Gaussian particle
filters and Gaussian sum particle filters

These new filters can cope with constant parameters more naturally
than previously proposed methods
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Handling constant parameters

Kernel-based auxiliary particle filter

The inclusion of fixed parameters in the model implies extending the
random measure to the form

χt =
{

x
(m)
t ,θ

(m)
t ,w

(m)
t

}M

m=1

The random measure approximates the density of interest
p(xt ,θ | yt), which can be decomposed as

p(xt ,θ | y1:t) ∝ p(yt | xt ,θ)p(xt | θ, y1:t)p(θ | y1:t)

It is clear that there is a need for approximation of the density,
p(θ | y1:t), e.g., by

p(θ | y1:t) ≈
M∑

m=1

w
(m)
t N

(
θ | θ̄(m)

t , h2Σθ,t

)
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Handling constant parameters

Density assisted particle filter

The approximating densities can be other than Gaussians or mixtures of
Gaussians

1 Draw particles of θ from p(θ|y0:t−1), i.e.,

θ
(m)
t−1 ∼ p(θ|y0:t−1)

2 Draw particles according to

x
(m)
t ∼ p(xt |x(m)

t−1,θ
(m)
t−1)

3 Set θ
(m)
t = θ

(m)
t−1

4 Update and normalize the weights

w
(m)
t ∝ p(yt |x

(m)
t ,θ

(m)
t )

5 Estimate the parameters of the density p(θ|y0:t) from

χt =
{

x
(m)
t ,θ

(m)
t ,w

(m)
t

}M

m=1
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Handling constant parameters

Handling constant parameters – example

xt = axt−1 + ut

yt = bxt + vt
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Rao-Blackwellization

An efficient approach: Rao-Blackwellized PF

Rao-Blackwellization allows for marginalization of part of the states
which are conditionally linear on the remaining states

This approach leads to a more accurate performance of SPF since a
smaller state space is explored

Standard implementation of Rao-Blackwellization requires running as
many Kalman filters as particle streams

An efficient realization of the Rao-Blackwellized PF with only one
Kalman filter has also been proposed

The new approach shows considerable computational savings without
sacrificing tracking performance
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Rao-Blackwellization

Example: Bearings-only tracking with biased measurements

Consider K targets moving along a 2D sensor field of N sensors

xt = Gxxt−1 + Guut

The n−th sensor at time instant t measures the bearing information of the
targets sensed in the field

yn,t = gn(xt) + bn + vn,t n = 1, · · · ,N

gn(xt) =
[
arctan

(
x2,1,t−x2,n

x1,1,t−x1,n

)
, · · · , arctan

(
x2,K ,t−x2,n

x1,K ,t−x1,n

)]>
where bn represents the unknown bias of the n−th sensor
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Rao-Blackwellization

Comparison of algorithms

Averaged MSE in m2 of two targets obtained by different methods using
M = 500 particles and J = 50 independent runs
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Prediction and smoothing

Prediction

The prediction problem revolves around the estimation of the predictive
density p(xt+l |y1:t), where l > 1

The approximation of the predictive density p(xt+l |y1:t) is obtained by

1 drawing particles x
(m)
t+1 from p(xt+1|x(m)

t )

2 drawing particles x
(m)
t+2 from p(xt+2|x(m)

t+1)

3 · · ·
4 drawing particles x

(m)
t+l from p(xt+l |x

(m)
t+l−1)

5 and associating with the samples x
(m)
t+l the weights w

(m)
t and thereby

forming the random measure {x(m)
t+l ,w

(m)
t }Mm=1.
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Prediction and smoothing

Smoothing

All the information about xt in this case is in the PDF p(xt |y1:T )

Forward PF
Run PF in the forward direction and store all the random measures

χt = {x(m)
t ,w

(m)
t }Mm=1, n = 1, 2, · · · ,N

Backward recursions
Set the smoothing weights

w
(m)
s,T = w

(m)
T and χs,T = {x(m)

T ,w
(m)
s,T }

M
m=1

For n = N − 1, · · · , 1, 0
Computation of the smoothing weights ws,t

Compute the smoothing weights of x
(m)
t by

w
(m)
s,t =

∑M
j=1 w

(j)
s,t+1

w
(m)
t p(x(j)

t+1|x
(m)
t )∑M

l=1 w
(l)
t p(x(j)

t+1|x
(l)
t )

Construction of the smoothing random measure χs,t

Set χs,t = {x(m)
t ,w

(m)
s,t }Mm=1
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Multiple particle filters
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Multiple particle filters

Multiple particle filters

We are interested in particle filtering methods for complex systems that
can be represented by the following state-space model:

xt = fx(xt−1,ut)

yt = fy (xt , vt)

We assume that the dimension of xt is high

From practice we know that high-dimensional states would, in general,
require a very large number of particles for accurate tracking of the
posterior pdf of xt
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Multiple particle filters

Multiple particle filters

The underlying idea is to use multiple particle filters that communicate
information about their posterior pdfs

The particle filters operate on partitioned subspaces of the complete state
space

The state space is decomposed into separate subspaces of lower
dimensionality which form a partition of the original space

We assume that the interest is in finding the marginal posterior densities
of the state vectors that span these subspaces
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Multiple particle filters

Multiple particle filters

 

A system of multiple particle filters.
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Multiple particle filters
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Convergence issues
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Convergence issues

Convergence issues

PF is based on approximations of PDFs by discrete random measures

We expect that the approximations deteriorate as the dimension of
the state space increases but hope that as the number of particles
M →∞, the approximation of the density will improve

The approximations are based on particle streams, and they are
dependent because of the necessity for resampling

Therefore classical limit theorems for studying convergence cannot be
applied, which makes the analysis more difficult

The Particle Filtering Methodology in Signal Processing Petar M. Djurić 66 / 70
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Convergence issues

Convergence theorems

Theorem 1: If p(xt |xt−1) satisfies some mild conditions and the
likelihood function p(yt |xt) is bounded, continuous and strictly
positive, then

lim
M→∞

χM
t = p(xt |y1:t)

almost surely

Theorem 2: If the likelihood function p(yt |xt) is bounded, for all
t ≥ 1 there exists a constant ct independent of M such that for any
bounded function

E (e2
t ) ≤ ct

‖h(xt)‖2

M

where E (·) is an expectation operator, h(xt) is a function of xt , and
‖h(xt)‖ denotes the supremum norm, i.e.,

‖h(xt‖ = sup
xt

|h(xt)|
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Conclusions

Conclusions

PF is a Monte Carlo-based methodology for sequential estimation of
dynamic (and static) signals (states)

The performance of the method depends on the number of particles
that are used and the way how new particles are proposed

PF can be improved if some of the states are tracked by optimal
(Kalman) filters

Convergence results exist

Efforts of generalizing PF include application of the philosophy when
the noise distributions in the state and observation equations are
unknown

PF is computationally intensive but special hardware can be built that
exploits the parallelizability of PF

Challenges of PF include tracking in high-dimensional state spaces
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Conclusions

Conclusions

PF is a Monte Carlo-based methodology for sequential estimation of
dynamic (and static) signals (states)

The performance of the method depends on the number of particles
that are used and the way how new particles are proposed

PF can be improved if some of the states are tracked by optimal
(Kalman) filters

Convergence results exist

Efforts of generalizing PF include application of the philosophy when
the noise distributions in the state and observation equations are
unknown

PF is computationally intensive but special hardware can be built that
exploits the parallelizability of PF

Challenges of PF include tracking in high-dimensional state spaces

The Particle Filtering Methodology in Signal Processing Petar M. Djurić 69 / 70
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