ON-CHIP ESD PROTECTION DESIGN BY MIXED-MODE SIMULAITON

Professor Albert Wang Dept. of Electrical & Computer Engineering Illinois Institute of Technology

3301 S. Dearborn, Chicago, IL 60616Email: awang@ece.iit.eduTel: (312) 567-6912http://www.ece.iit.edu/~awangFax: (312) 567-8976URL: http://www.ece.iit.edu/~iel

Copyright © 2003 by Albert Wang, All Rights Reserved

OUTLINE

- On-Chip ESD Protection: Basics & Solutions
- Mixed-Mode ESD Simulation-Design
- Practical ESD Design Examples
- New Challenges: RF/M-S/Whole-Chip ESD

Integrated Electronics Laboratory @ IIT

Research Interests:

- Advanced IC designs:
- * Analog/mixed-signal/RF ICs
- * SoC
- Advanced ESD Protection for ICs
- · IC CAD & Modeling
- Semiconductor Devices

CURRENT RESEARCH ACTIVITIES @ IEL

Projects:

- * Resolution/sampling/power-optimized ADC in SiGe
- * Multi-mode universal RF SoC ICs in SiGe BiCMOS
- * Hi-resolution/hi-speed ADC chips in CMOS/BiCMOS
- * Universal Digital-ready RF SoC ICs in CMOS/BiCMOS
- * Super-compact cored RF IC inductors
- * Modeling & CAD for electro-magnetic devices
- * ASIC interpolator IC for sine/cosine optical encoder
- * 15kV HBM ESD protection for mixed-signal ICs
- * ESDcat whole-chip ESD design verification CAD
- * Super-compact ESD protection
- * RF ESD protection in CMOS/BiCMOS
- * 3D ESD protection simulation-design methodology

WHAT IS ESD?!

- ESD = Electrostatic Discharge
- ESD events transfer of charges between objects
- Phenomena super fast & huge I/V pulses

\Rightarrow Cause electronic part (IC) damages

A Multi-B-\$ Problem

- ESD failures 30% 50% IC field failures
- A killing factor for time-to-market.

- [1] L. Brown, et al, Electronic Packaging & Production, April 1990.
- [2] R. Merril, et al, EOS/ESD symp., 1993.

ESD Protection

- Advanced package solutions.
- Buffers using new anti-ESD materials.
- Add-on ESD devices.

>On-Chip ESD protection circuitry for all I/Os of IC chips.

ESD Test Models

- HBM human body model.
- MM machine model.
- CDM charged device model.
- IEC Int'l Electrotechnical Commission Model
- TLP transmission line pulse model
- Field Induction.

HBM ESD Test Model

HBM ESD Pulse Waveform

MM ESD Model

CDM ESD Model

IEC ESD Model

Table III IEC test classification

Contact discharge		Air discharge	
Level	Test voltage	Level	Test voltage
1	2kV	1	2kV
2	4kV	2	4kV
3	6kV	3	8kV
4	8kV	4	15kV
Х	open	Х	open

TLP Test Model

On-Chip ESD Protection: Basics

- Two types of ESD damages:
- Thermal damage \rightarrow heat generation in Si, metal
- Dielectric rupture ← high electric field ← high voltage
- Two ESD protection requirements:
- To discharge hi-current safely,
- To clamp pad voltage to a sufficiently low level.

 \leftarrow high current

ESD Protection Mechanisms

- Two ESD protection mechanisms:
- Simple turn-on I-V,
- Snapback I-V.

- Key parameters:
- (V_{t1}, I_{t1}, t_1) , (V_h, I_h) , (V_{t2}, I_{t2}) , etc.

A Complete ESD Protection Scheme

ESD protection = Devices: Diodes, BJT, MOS, SCR...;
or = Circuit blocks

Diodes as ESD Protection

- Diode ESD protection: Forward or Reverse,
- Hi-current mode,

 $i_D \propto e^{rac{v_D}{2V_T}}$

- Forward diode strings,
- Zener diodes

BJTs for ESD Protection

MOSFETs for Protection: ggMOS

IEEE SSCS Distinguished Lecture 1

© Prof. Albert Wang @ ECE-IIT, 03-07-2003 @ SSC Toronto Chapter

MVSCR/LVSCR ESD Protection

ESD Failure Analysis

- Catastrophic failure \rightarrow destroying devices.
- * Thermal breakdown: Si, metal interconnects
- * Dielectric rupture: MOS gate oxide
- Latent defects \rightarrow degradation.
- * Increased leakage
- * Lifetime problem
- * Unknown mechanisms

ESD Failure Signatures

efects at D/G diffusion edge

Vdd-Vss stressing

D-S local defect in fingers

ESD Protection Circuits

- ESD protection goes beyond single-device solutions,
- Complex ESD protection circuits are used in modern IC designs,
 - To meet unique need of different circuit blocks on a chip,
 - To take full use of modern IV technologies: BiCMOS, RF, Hi-V, SiGe, SOI, etc.

•

٠

I/O ESD Protection Circuits

A primary-secondary protection scheme

- Primary unit: takes most ESD current, low-V_h, but V_{t1}~high,
- Secondary unit: lower V_{t1}, handle low ESD pulse,
- Isolation-R: V-build-up after 2nd one ON, to turn on 1st one; prevent current flowing into internal circuit.
- Any reasonable combination works.

Multi-finger ggNMOS ESD Protection

- Issue: non-uniform turn-on \rightarrow lower protection than designed
- Solution 1: using Ballasting -R,
- Solution 2: make $V_{t1} < V_{t2}$

Gate-coupled NMOS (gcNMOS)

IEEE SSCS Distinguished Lecture 1

© Prof. Albert Wang @ ECE-IIT, 03-07-2003 @ SSC Toronto Chapter

BJT ESD Protection Cirucits

IEEE SSCS Distinguished Lecture 1

© Prof. Albert Wang @ ECE-IIT, 03-07-2003 @ SSC Toronto Chapter

A complex CMOS trigger BJT circuit

- Zener-D not available in CMOS
- D-string = external-I to BJT
- M1=isolation w/o ESD; ON at ESD
- +ESD: M2=On, M2+R \rightarrow M3=On
- \rightarrow M1 = On
- $\cdot \rightarrow \mathsf{trigger BJT}$

Ref: J, Smith, Proc. EOS/ESD, p63, 1998.

SCR ESD Protection Circuits

Ref: Ker, M., et al, *IEEE J. Solid-State Cir., Vol. 32, No. 1,* January 1997, pp.38. *IEEE SSCS Distinguished Lecture 1* © *Prof.* Chen, J., et al, IEEE IEDM Digest, 1995, pp. 337.

© Prof. Albert Wang @ ECE-IIT, 03-07-2003 @ SSC Toronto Chapter

Output Buffer Self-Protection

- Output buffer transistors \Rightarrow ESD protection,
- buffers functionality ~ ESD trade-off,
- Don't use gcNMOS: it alters buffer!
- Use ballasting-R for uniformity,
- Ballasting-R = drain extension region

Ref: D. Scott, et al, "Circuit to Improve Electrostatic Discharge Protection", U.S. Patent, No. 5,019,888, 1991.

© Prof. Albert Wang @ ECE-IIT, 03-07-2003 @ SSC Toronto Chapter

Power Clamps

NMOS clamps

NMOS-triggered SCR clamp

Diode-string Power Clamp

V_{DD}

 Q_6

V_{SS}

 V_{DD}

 R_1

nw

- Design trade-off:
- Darlington amplification: Hi- $\beta \rightarrow$ lower Vt1, $V_{t1} = \sum_{i=1}^{m} V_{Di} = mV_D \frac{m(m-1)}{2} nV_T \ln(1+\beta)$
- Hi- $\beta \rightarrow \text{low Ron}$,

$$R_{on} = R_{i6} \approx r_e + \frac{R_{i5} + R_W}{1 + \beta} = r_e \sum_{a=0}^5 \frac{1}{(1 + \beta)^a} + R_W \sum_{b=1}^6 \frac{1}{(1 + \beta)^b}$$

IEEE SSCS Distinguished Lecture 1

© Prof. Albert Wang @ ECE-IIT, 03-07-2003 @ SSC Toronto Chapter

V_{SS}

n

 Q_5

nw

 \mathbf{R}_2

nw

P-substrate

 V_{DD}

 Q_4

V_{SS}

nw

V_{SS}

 Q_3

nw

V_{SS}

 Q_2

V_{SS}

n

 Q_1

nw

NMOS Switch as Power Clamp

- Advantage: all normal device operation \rightarrow good for Spice simulation,
- Disadvantage: need large NMOS/PMOS size,

Ref: Merrill, R. and Issaq, E., "ESD Protection Methodology", 15th EOS/ESD Symp., 1993, pp.233.

Challenges in ESD Design

- Lack of well-developed ESD theory
- Trial-&-Error ESD design approaches dominate:
- * Experience + Si iterations
- * Lack of ESD simulation & design methodology
- * Average 3 iterations for experienced designers
Challenges

- Common mistake design portability.
- · Costly, time-consuming, tedious.
- What does an IC designer want?

 \succ ESD forward design methodology \rightarrow prediction by CAD

> Full-chip ESD design verification \rightarrow

ESD-circuit interactions.

New Mixed-mode ESD Simulation-Design Methodology

- Mixed-mode ESD simulation:
- * Electro-thermal coupling
- * Process-Device-circuit-layout coupling

ESD design prediction (forward design), not analysis (backward approach).

ESD Design Method: New ~ Old

Mixed-Mode ESD Simulation Schematic

- Device-circuit coupling
- No assumption

© Prof. Albert Wang @ ECE-IIT, 03-07-2003 @ SSC Toronto Chapter

ESD Simulation Capabilities

- Steady State Analysis: V_{t1} , I_{t1} , V_h , I_h , etc.
- Actual Transient ESD Event Simulation: V_{t1}, I_{t1}, V_{t2}, I_{t2}, t₁, ESDV, etc.
- Failure Analysis Capabilities
- * Currents & heat flow in protection circuitry S
- * Currents & heat flow in metals
- * Failure defects -- melting point, latent failures, etc.
- Integration of ESD & process development.

What's Critical in ESD Simulation?

Calibration

Calibration!!

CALIBRATION!!!

To avoid garbage-in garbage-out

xample 1: NMOS ESD Protection in 0.8 μ CMC

[1] A. Wang, et al, "A study of NMOS behavior under ESD stress: simulation and characterization", *Microelectronics Reliability, v38, Pergramon, 1998,* pp1183-1186.

[2] H. Feng, "A Mixed-Mode Simulation-Design Methodology For On-Chip ESD Protection Design", MS Thesis, IIT, 2001.

GGNMOS (SCGS=2um, DCGS=4um, W=100um)

IEEE SSCS Distinguished Lecture 1

© Prof. Albert Wang @ ECE-IIT, 03-07-2003 @ SSC Toronto Chapter

44

GCNMOS (SCGS=2um, DCGS=4um, W=100um)

Example 1: Data

	GGNMOS		GCNMOS	
	SIM.	TEST	SIM.	TEST
$V_{t1}(V)$	14.68	12.56	7.54	6.66
$t_1(ns)$	0.2	-	0.42	-
$V_h(V)$	6.92	6.48	7.41	6.08
$V_{G}(V)$	-	-	3.67	-
$t_{G}(ns)$	-	-	0.32	-

Example 2: ggNMOS ESD in 0.35u CMOS

ggNMOS ESD Structure under Stress

ggNMOS ESD Simulation: Passed

ggNMOS ESD Simulation: Failed

Example 3: Circuit+gcNMOS Clamp in 0.35µ CMOS

A circuit block of 2 inverters in parallel with a gcNMOS power clamp Equivalent circuit at input = L: ESD defect M_{n2} gate? (BV _G = 8V)

Ref: H. Feng, "A Mixed-Mode Simulation-Design Methodology For On-Chip ESD Protection Design", MS Thesis, IIT, 2001.

Example 3 Simulation

- V_{t1} <6V,
- Potential risk of $V_G \sim BV_G$ very briefly,
- Hot M_{n3}: gcNMOS works.

IEEE SSCS Distinguished Lecture 1

© Prof. Albert Wang @ ECE-IIT, 03-07-2003 @ SSC Toronto Chapter

Example 5: Output ESD Protection

- Differential output buffer with open collectors
- SCR ESD protection

Ref: H. Feng, et al, In press, IEEE JSSC, 2003.

Example 5 ESD Simulation Topology

~100% ESD Current Discharges into SCR ESD

T_{max} in Each Devices under ESD

ESD heat generation in SCR ESD device only

© Prof. Albert Wang @ ECE-IIT, 03-07-2003 @ SSC Toronto Chapter

NEW ESD DESIGN CHALLENGES

Emerging ESD protection design concerns:

- RF ESD protection: What's unique?
- ESD protection for mixed-signal ICs
- Whole-chip ESD protection design
- Full-chip ESD protection design verification by CAD

RF ESD?

Some theories to define the RF ESD phenomena & problems Need to define RF ESD characterizing parameters To design RF ESD protection circuits by ESD simulation To perform RF ESD design verification Need to characterize your designs by testing To balance Specs for RF ESD protection and the circuits.

Full ESD protection scheme

- Multiple units for ND, PD, NS, PS, DS & SD ESD protection
- Large sizes

> Problem: too much parasitics \Rightarrow intolerant to RF ICs.

IEEE SSCS Distinguished Lecture 1

© Prof. Albert Wang @ ECE-IIT, 03-07-2003 @ SSC Toronto Chapter

ESD-Circuit Interactions

Circuit-to-ESD Influences

- ESD protection may be affected by the core circuits protected,
- Weak discharge links in core IC Early ESD Failure.
- > Unique Challenge 1: ESD Mis-Triggering by fast RF/M-S signals (dV/dt, dI/dt)

ESD-to-Circuit Influences

- o C_{ESD} R_{ESD} delay \Rightarrow signal integrity, clock corruption, ...
- o $C_{ESD} \Rightarrow$ loading effect, Z-matching, power efficiency, BW, ...
- o ΔC_{ESD} , ΔR_{ESD} ~ frequency, biasing, T, ...
- > Unique Challenge 2: including C_{ESD} in RF IC design,
- ESD-Induced Parasitics: Noises
- Substrate noise-coupling effects due to C_{ESD}
- o Self-generated noises by ESD units
- > Unique Challenge 3: ESD noise effects into RF ICs?

Local-Optimization for Mixed-Signal ESD

- One global ESD triggering, V_{t1} , does NOT fit whole chip,
- Multi- $V_{DD}/V_{SS} \Rightarrow$ locally-optimized V_{t1} for different I/Os,
- Need a safety margin for V_{t1} :

 V_{t1} of 5V fits V_{DD} =3.3V blocks, V_{t1} of 23V good for V_{DD} =15V blocks.

Challenge: multi-V_{t1} ESD design in RF/M-S ICs
 ⇒ whole-chip ESD design optimization,
 ⇒ not quite unique for RF ESD

ESD-to-Circuit Influences

Let data speak:

- Three different types of ESD protection structures: ESD1, ESD2 & ESD3,
- Three RF blocks: a 4GHz ring oscillator, a bluetooth LNA & a hi-speed Op Amp.
- o Fabricated in 6M 0.18 μ m CMOS with Al/Cu interconnects

ESD	types	ESD1		ESD2		ESD3	
	C _{Si}	0.54		0.09		0.07	
C _{ESD} (pF)	C _M	Cu	AI	Cu	AI	Cu	AI
		0.30	0.43	0.029	0.041	0.019	0.028

Hi-speed Op Amp: General SPEC's

- An Op Amp in 0.18 μ m CMOS, Design SPECs:
- wer: 0.43mW,
- ew rate: 116mV/ns,
- ettling time: 3.7ns at 1%,
- utput swing: 0.96 at 80% gain,
- V: 121MHz

Strong $C_{ESD} \sim SEPCs$ Correlation!

Specs	No C _{ESD}	ESD1	ESD2	ESD3	
f _T (MHz)	120.7	-38.7%	-8.9%	-7%	
		Recovery			
		ightarrow + 81.9% (+83.5% in Cu) $ ightarrow$			
Phase Margin	70.1°	-14.4%	-2.0%	-1.6%	
		Recovery			
		ightarrow + 88.9% (+90.3% in Cu) $ ightarrow$			
Slew rate (mV/ns)	115.9	-30.1%	-5.2%	-4.1%	
		Recovery			
		→ + 86.4% (+88.7% in Cu) →			
t _{set} (ns, 1%)	3.77	-353%	-102%	-89.7%	
		Recovery			
		ightarrow +74.6% (+76.9% in Cu) $ ightarrow$			Cu) →

ESD Noise Effects by LNA

- A Bluetooth LNA in 0.18µm CMOS,
- Design SPECs:

on-chip 50 Ω matching at I/O,

center freq: 2.4GHz,

NF=1.76dB,

P=24mW in 3.3V,

S₂₁=23.4dB,

S₁₁=-34.5dB,

S₂₂=-47.7dB S12=-39.6dB

How ESD Structures Affect NF?

ESD Protection Type	NF (dB)	Degradation
No ESD	1.7582	
ESD1	1.8247	3.78%
ESD2	1.7596	0.08%
ESD3	1.7586	0.02%

Strong influences of ESD protection structures on noise performance

RF ESD Protection Solutions

- RF ESD protection still in the problem-shaping phase!
- No all-fit & well-argued RF ESD solution yet.
- Any ESD protection \Rightarrow RF ESD given ESD-Circuit interactions $\downarrow \downarrow \downarrow$

>Goal for RF ESD ⇒ ANY NOVEL structures: oUltra-fast ESD switching, oNovel triggering mechanisms, oHi-ESDV/Si ratio, oSmall size, oLow-parasitics, oMultiple-mode ESD protection,

Whole-Chip ESD Protection

- Ensure a discharging path between ANY two pads.
- Consider possible internal weak-leak as shunting-channels
- Estimate the worst-case discharge-path impedance

A pad + Clamp Scheme;

A common ESD bus scheme

Ref: A. Wang, On-Chip ESD Protection for Integrated Circuits, Kluwer Academic Publishers, ISBN: 0-7923-7684-1, 2002.

Nice: Pad-oriented Compact ESD Protection

ef: A. Wang, et al, "A New Pad-Oriented Multiple-Mode ESD Protection Structure and Layout Optimization", IEEE Electron Device Letts, Vol.22, No.10, pp.493, Oct.

Why Bother These Exotic Design?!

Ref: Hatori, et al, Proc. IEEE CICC 2001, pp501.

Future Work on ESD Protection

- A 3D mixed-mode ESD simulation-design methodology
- Full-chip ESD verification tool: ESDExtractor \rightarrow ESDInspector (smart checking) \rightarrow ESDZapper \rightarrow ESDSimulator \rightarrow ESDcat
- Hi-I ESD Device Modeling: P-SWM model for geometry
- More on ESD-Circuit Interactions
- Novel low-parasitic compact ESD protection
- Super-GHz RF ESD protection
- ESD for Wide-bandgaps, GaN..
- Nano-ESD protection
- Emerging apps....
REFERENCES

- A. Wang, *On-Chip ESD Protection For Integrated Circuits*, Kluwer Academic Publishers, Boston, ISBN: 0-7923-7647-1, 2002.
- A. Wang, et al, "On-Chip ESD Protection Design for Integrated Circuits: an Overview for IC Designers", *J. Microelectronics, Elsevier Science, Vol. 32/9,* pp.733-747, August 2001.
- A. Wang, et al, "ESD Protection Design for RF Integrated Circuits: New Challenges", *Invited*, *IEEE CICC*, May 2002, pp.411-418.
- A. Wang, "A Study of Parasitic Effects of ESD Protection on RF ICs", *IEEE Trans. Microwave Theory & Tech., Vol.50, No.1,* Jan. 2002, pp.393-402.
- H. Feng, et al, "A Mixed-Mode ESD Protection Circuit Simulation-Design Methodology ", In press, IEEE JSSC, 2003.
- K. Gong, "ESD Protection in Copper Interconnect and ESD-to-Circuit Performance Influences", *MS Thesis*, IIT, May, 2001.

and THE Book for Designers

ON-CHIP ESD PROTECTION FOR INTEGRATED CIRCUITS

An IC Design Perspective

Kluwer Academic Publishers, Boston Hardbound, ISBN 0-7923-7647-1 January 2002, 320 pp. EUR 142.00 / USD 130.00 / GBP 90.00

ON-CHIP ESD PROTECTION FOR INTEGRATED CIRCUITS

An IC Design Perspective

Albert Z. H. Wang

	kluwer the language of science Shopping Cart 당
About us Contact	Conference Schedule Order Browse by Subject Custome
Search	Books » On-Chip ESD Protection for Integrated Circuits
Title advanced search search tips	On-Chip ESD Protection for Integrated Circuits An IC Design Perspective
	by
Products & Services	Albert Z.H. Wang
Kluwer online	Illinois Institute of Technology, Chicago, USA
Journals	
Books	BOOK SERIES: THE KLOWER INTERNATIONAL SERIES IN ENGINEERING AND COMP
Looseleafs	SCIENCE . Volume 005
Electronic	
Kluwer Alert	This comprehensive and insightful book discusses ESD protection circuit design problem:
ana tan tan tan tan tan tan tan tan tan	designer's perspective. On-Chip ESD Protection for Integrated Circuits: An IC Design Per
Resources	protection circuits, including:
Authors	
Bookstore	 Testing models and standards adopted by U.S. Department of Defense, EIA/JEDE Association, Automotive Electronics Council, International Electrotechnical Commit
Libraries	ESD failure analysis, protection devices, and protection of sub-circuits
Partners	 Whole-chip ESD protection and ESD-to-circuit interactions
	 Advanced low-parasitic compact ESD protection structures for RF and mixed-signa Mixed-mode ESD simulation-design methodologies for design prediction ESD-to-c interactions, and more!

Many real world ESD protection circuit design examples are provided. The book can be u reference book for working IC designers and as a textbook for students in the IC design fi

Contents

Kluwer Academic Publishers, Boston Hardbound, ISBN 0-7923-7647-1 January 2002, 320 pp. EUR 142.00 / USD 130.00 / GBP 90.00

.....

HOME | ABOUT US | CONTACT US | CONFERENCE SCHEDULE | ORDERING INFORMATION | BROWSE BY SUBJECT | CUSTOMER SERVIC

PRIVACY POLICY

Copyright ® 2001 Kluwer Academic Publishers. All rights reserved. Kluwer Academic Publishers is a <u>Wolters Kluwer</u> company.

	kluwer the language of science Shopping Cart 되
About us Contact	Conference Schedule Order Browse by Subject Custome
Search	Books » On-Chip ESD Protection for Integrated Circuits
Title	An IC Design Perspective
search tips	by
Products & Services	Albert Z.H. Wang Illinois Institute of Technology, Chicago, USA
Kluwer online	Dedication. Acknowledgements. Preface. 1. Introduction. 2. ESD Test Models. 3. ESD Pr
Journals	Device Solutions. 4. ESD Protection Circuit Solutions. 5. Advanced ESD Protection; Mixe
Books	Influences on ESD Protection Circuit Design. 8. ESD Simulation-Design Methodologies. §
Looseleafs	Circuit Interactions. 10. Conclusion Remarks and Future Work. Appendix A: Summary fc
Electronic	Protection Circuit Design Checklist. Index.
Kluwer Alert	
Resources	
Authors	
Bookstore	
Libraries	
Partners	

HOME | ABOUT US | CONTACT US | CONFERENCE SCHEDULE | ORDERING INFORMATION | BROWSE BY SUBJECT | CUSTOMER SERVIC
PRIVACY POLICY

<u>Copyright</u> ® 2001 Kluwer Academic Publishers. All rights reserved. Kluwer Academic Publishers is a <u>Wolters Kluwer</u> company.

Contents

Dedication		v	
Table of Conter	nts	vii	
Acknowledgem	ients	xiii	
Preface		XV	
Chapter 1	INTRODUCTION	1	
1.1	A LITTLE HISTORICAL STORY	1	
1.2	ESD FAILURE – AN IC RELIABILITY PROBLEM	2	
1.3	ON-CHIP ESD PROTECTION		
	- GENERAL REMEDY	4	
1.4	CHALLENGES IN ESD PROTECTION DESIGN	6	
1.5	SCOPE OF THIS BOOK		
REFERENCES		9	
Chapter 2	ESD TEST MODELS	11	
2.1	NATURE OF ESD PHEMONEMA	11	
2.2	HBM MODEL	14	
2.3	MM MODEL	18	
2.4	CDM MODEL	21	
2.5	TLP MODEL	24	
2.6	OTHER MODELS	27	
	vii		

2.7	ESD ZAPPING TESTS	30		
2.8	SUMMARY			
REFERENCE	ES	33		
Chapter 3	ESD PROTECTION DEVICE SOLUTIONS	35		
3.1	ON-CHIP ESD PROTECTION MECHANISMS	35		
3.2	DIODE AS ESD PROTECTION ELEMENT	37		
3.2.1	Diode Device Physics	37		
3.2.2	Diode in ESD Protection Operation	40		
3.2.3	Diode Parasitic Modelling	41		
3.3	BJT AS ESD PROTECTION ELEMENT	42		
3.3.1	BJT Device Physics	42		
3.3.2	BJT in ESD Protection Operation	46		
3.3.3	BJT Parasitic Modelling	49		
3.4	MOSFET AS ESD PROTECTION ELEMENT	51		
3.4.1	MOSFET Device Physics	51		
3.4.2	ggMOSFET in ESD Protection Operation	54		
3.4.3	MOSFET Parasitic Modelling	57		
3.5	SCR AS ESD PROTECTION ELEMENT	59		
3.5.1	SCR Device Physics	59		
3.5.2	SCR in ESD Protection Operation	64		
3.5.3	SCR Parasitic Modelling	67		
3.6	SUMMARY	70		
REFERENCI	ES	71		
Chapter 4	ESD PROTECTION CIRCUIT SOLUTIONS	73		
4.1	INPUT ESD PROTECTION SCHEMES	73		
4.1.1	A Primary-Secondary ESD Protection Network	74		
4.1.2	Multiple-Finger ESD Protection Structure	75		
4.1.3	Gate-Coupled MOS ESD Protection Structure	77		
4.1.4	BJT ESD Protection Network	80		
4.1.5	SCR ESD Protection Network	85		
4.2	OUTPUT ESD PROTECTION SCHEMES	89		
4.2.1	Dedicated Output ESD Protection Network	90		
4.2.2	Self-Protection of Output Stages	95		
4.3	POWER CLAMPS	95		
4.3.1	NMOS Power Clamp	96		
4.3.2	SCR Power Clamp	97		
4.3.3	Diode String Power Clamp	98		
4.3.4	Switch as Power Clamp	102		
4.4	SUMMARY	104		

REFERENCES

ix

Chapter 5	Chapter 5 ADVANCED ESD PROTECTION			
-	Mixed-Signal, RF and Whole-Chip ESD Protection	107		
5.1	ESD PROTECTION FOR MIXED-SIGNAL ICs	107		
5.2	ESD PROTECTION FOR RF ICs	108		
5.3	LOW-PARASITIC MULTIPLE-MODE			
	SOLUTIONS	113		
5.3.1	A Dual-Direction ESD Protection Structure	115		
5.3.2	An All-in-One Multiple-Mode ESD Protection	101		
F A	Design	121		
5.4	WHOLE-CHIP ESD PROTECTION SCHEMES	126		
5.4.1	Principles for Full-Chip ESD Protection	127		
5.4.2	A Pad + Clamp Scheme	127		
5.4.3	A Common ESD Discharge Bus Scheme	129		
5.5	NON-PORTABILITY IN ESD PROTECTION	130		
5.6	SUMMARY	131		
REFERENCE:	S	132		
Chapter 6	ESD FAILURE ANALYSIS AND MODELING	135		
6.1	WHY ESD FAILURE ANALYSIS?	135		
6.2	ESD FA TECHNIQUES	136		
6.3	SOME ESD FAILURE SIGNATURES	138		
6.4	ESD FA CORRELATION	155		
6.5	LATENT ESD FAILURE	159		
6.6	ESD FAILURE MODELING AND CRITERIA	162		
6.7	SUMMARY	165		
REFERENCE:	S	167		
Chapter 7	LAYOUT AND TECHNOLOGY INFLUENCES			
-	ON ESD PROTECTION CIRCUIT DESIGN	171		
7.1	LAYOUT vs. ESD PROTECTION	171		
7.2	REGULAR LAYOUT FOR ESD PROTECTION	172		
7.3	SPECIAL LAYOUT FOR ESD PROTECTION	183		
7.4	ADVANCED LAYOUT DESIGN CONCEPTS	193		
7.5	TECHNOLOGY SCALING vs. ESD			
	PROTECTION	205		
7.6	NEW TECHNOLOGY vs. ESD PROTECTION	206		
7.7	ESD PROTECTION FOR SOI AND SiGe	210		

Contents

7.8 7.9	ESD PROTECTION FOR NANO TECHNOLOGY SUMMARY	215 216
REFERENCES	5	217
Chapter 8	ESD SIMULATION-DESIGN METHODOLOGIES	219
8.1	ESD PROTECTION DESIGN METHODS:	
	TRIAL-&-ERROR versus PREDICTIVE	219
8.2	ESD DESIGN-SIMULATION: DEVICE LEVEL	
	versus CIRCUIT LEVEL	221
8.3	ESD PROTECTION DEVICE MODELING	224
8.4	MIXED-MODE ESD SIMULATION FOR	
	DESIGN PREDICTION	229
8.5	MIXED-MODE ESD SIMULATION:	
	CASE STUDY	234
8.5.1	Understanding ESD Simulation Results	235
8.5.2	Case 1: NMOS ESD Protection Structures in	•••
0.5.0	0.8µm BiCMOS	239
8.5.3	Case 2: MOS ESD Protection Circuit in 0.35µm	
o - 4	CMOS	246
8.5.4	Case 3: Metal Interconnect in ESD Protection Design	249
8.5.5	Case 4: A Dual-Direction ESD Protection	
	Structure in BiCMOS	251
8.6	ESD PROTECTION DESIGN VERIFICATION	255
8.7	SUMMARY	256
REFERENCES	S	
		258
Chapter 9	ESD – CIRCUIT INTERACTIONS	261
9.1	CHIP-LEVEL ESD PROTECTION DESIGN	261
9.2	CIRCUIT-TO-ESD INFLUENCES:	
	PRE-MATURE ESD FAILURES	262
9.3	ESD-TO-CIRCUIT INFLUENCES:	
	CIRCUIT PERFORMANCE DEGRADATION	268
9.4	SUMMARY	280
REFERENCES	S	282
Chapter 10	CONCLUSION REMARKS AND FUTURE WORK	283

х

10.1 10.2	CONCLUSION REMARKS FUTURE WORK		
Appendix A	SUMMARY FOR ESD TEST STANDARDS	287	
REFERENCES			
Appendix B	COMMERCIAL ESD TESTING SYSTEMS	293	
Appendix C	ESD PROTECTION CIRCUIT DESIGN CHECKLIST	295	
Index		299	

On-Chip ESD Protection for Integrated Circuits

An IC Design Perspective

by

Albert Z.H. Wang Illinois Institute of Technology, Chicago, USA

THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE 663

This comprehensive and insightful book discusses ESD protection circuit design problems from an IC designer's perspective. *On-Chip ESD Protection for Integrated Circuits: An IC Design* Perspective provides both fundamental and advanced materials needed by a circuit designer for designing ESD protection circuits, including:

- Testing models and standards adopted by U.S. Department of Defense, EIA/JEDEC, ESD Association, Automotive Electronics Council, International Electrotechnical Commission, etc.
- * ESD failure analysis, protection devices, and protection of sub-circuits
- * Whole-chip ESD protection and ESD-to-circuit interactions
- * Advanced low-parasitic compact ESD protection structures for RF and mixed-signal IC's
- Mixed-mode ESD simulation-design methodologies for design prediction ESD-to-circuit interactions, and morel

Many real world ESD protection circuit design examples are provided. The book can be used as a reference book for working IC designers and as a textbook for students in the IC design field.

Contents

Dedication. Acknowledgements. Preface. 1. Introduction. 2.
ESD Test Models. 3. ESD Protection Device Solutions. 4.
ESD Protection Circuit Solutions. 5. Advanced ESD Protection; Mixed-Signal, RF and Whole-Chip ESD Protection. 6.
ESD Failure Analysis and Modeling. 7. Layout and Technology Influences on ESD Protection Circuit Design. 8. ESD Simulation-Design Methodologies. 9. ESD – Circuit Interactions. 10. Conclusion Remarks and Future Work. Appendix A: Summary for ESD Test Standards. References. Appendix B: Commercial ESD Testing Systems. Appendix C: ESD Protection Circuit Design Checklist. Index.

January 2002, 320 pp. Hardbound, ISBN 0-7923-7647-1 EUR 142.00/USD 130.00/GBP 90.00

Kluwer Academic Publishers

PUBLICATION - NEW PUR VEW PUBLICATION - NEW PUBLICATION - NEW PUBLICATION - NEW |

ORDER FORM

Please send me On-Chip ESD Protection for Integrated Circuits by Albert Z.H. Wang:

Copy(ies) of Hardbound, ISBN 0-7923-7647-1 EUR 142.00/USD 130.00/GBP 90.00

O Payment enc	losed to the	amount of			
O Please invoic	e me	O Please charge m	y credit card		
O Am. Ex.	O Visa	O Diners Club	O Mastercard	O Eurocard	O Access
Name of Card I	lolder:				
Card. No.:			Expiny	/ Date:	
Delivery addres	S :				
Name:					
Address:					
Date:		Signature	:		REF. 266
European VAT I	Registration	Number:			
To be sent to vo	ur sunnlier	or:	Distributor in the	Americas:	

To be sent to your supplier or: KLUWER ACADEMIC PUBL. GROUP Order Dept., P.O. Box 322 3300 AH Dordrecht, The Netherlands Fax +31-78-6546474 Tel +31-78-6392392 Internet E-mail: services @wkap.nl Distributor in the Americas: KLUWER ACADEMIC PUBLISHERS Order Dept., PO. Box 358, Accord Station Hingham, MA 02018-0358, USA Fax +1-781-6819045 Tel +1-781-6716600 Internet E-mail: kluwer 6 wkap.com 064

Orders from individuals accompanied by payment or authorization to charge a creditcard account will ensure prompt delivery. Postage and handling on all such orders, delivered by surface mail, will be absorbed by the Publisher. Orders from outside Europe will be sent by airmail, for which the customer will be charged extra. Payment will be accepted in any convertible currency. Please check the rate of exchange at your bank. US Dollar prices are pxclusive of Value Acided Tax (VAT). Customers in the Netherlands please add 6% VAT. Customers from other countries in the European Community please fill in the VAT number of your Institute/company in the appropriate space on the order form; or add 6% VAT).

