Analog Front End Design For ADSL
 R. K. Hester
 Texas Instruments Incorporated
 Dallas, Texas, USA

Outline
- Canonical ADSL System Diagram
- Signal Characteristics
- Impairments
- Line Coupling Circuits
- Transmitter Design
- Receiver Design

ADSL System

Central Office

Remote Terminal

Unlike V.xx dial-up modems, the signal is not terminated by a voice-band line card

Signal Characteristics

- DMT modulation
- Frequency plan
- Capacity
- Peak-to-Average Ratio and BER
- Continuous-time/Discrete-time PSD

Discrete Multi-Tone Signaling (ODFM)

- Employs many narrow-band (4.3125 kHz) sub-carriers
- Low baud frequency (4 kHz)
- Data dynamically assigned to sub-carrier according to SNR
- IFFT/FFT used to modulate/demodulate in blocks

Frequency Plan

Frequency Division Duplexed

Echo-Cancelled

ITU G.hs training protocol guarantees FDD-EC modem interoperability

Annex A Frequency Plan Example

- Sub-carrier frequencies: $\mathrm{n} * 4.3125 \mathrm{kHz}$
- Upstream n=6, ..., 31
- Echo-canceling downstream $n=6, \ldots, 255$
- Frequency division downstream $\mathrm{n}=33, \ldots, 255$
- Modulation: 4QAM ... 32768QAM
- Subcarrier data rate capacity: 2-15 bits per baud period

Subcarrier Capacity versus SNR

Maximum 15kft 26awg Data Rate Capacity

More on Frequency Plan

Annex Upstream Downstream

- A (POTS) 6-31 6 (33) - 255
- A+ 6-3

6 (33) - 511

- B (ISDN) 29-63

29 (60) - 255

- B+

29-63
29 (60) - 511

- C (TCM-ISDN) 33-63

33-255

- H (TCM-ISDN) 6-255

6-255

- I

1-31
1-255

- J

1-31 (63)
1-255

Peak-to-RMS Ratio

- Subcarriers are statistically independent, so sum of \mathbf{N} has Gaussian probability distribution in time-domain, where variance is $0.43152 * \mathbf{N}$ volt ${ }^{2}$.
- When $\mathbf{N}=\mathbf{2 5 0}$, the RMS signal is $\mathbf{3 . 2 8 V}$, and a 16 dB peak-to-RMS ratio corresponds to $41.4 \mathrm{~V}_{\mathrm{PP}}$.

Gaussian Signal Statistics

- Sub-carriers are statistically independent, so sum of \mathbf{N} sub-carriers has Gaussian probability (central limits theorem)
- Signal clipping, either analog or digital, transmitter or receiver, wrecks SNR and creates transmission errors
- Must support signal swing that corresponds to desired bit error rate
-16dB peak-to-RMS ratio (peaks to $6.3 \mathrm{~V}_{\text {RMS }}$) corresponds to a $10^{-7} \mathrm{BER}$.

Sub-Carrier Power Spectral Density ($\mathbf{d B m} / \mathbf{H z}$)

$=-3.65 \mathrm{dBm}(432 \mu \mathrm{~W})$ downstream and $-1.65 \mathrm{dBm}(544 \mu \mathrm{~W})$ upstream.

ITU/ANSI PSD Masks

Downstream PSD With Continuous Time Sub-Carrier Generation

DSP Transmitter Signal (Minimum Sample Rate)

- Minimum Annex A downstream 256-point IFFT with 4312.5 Hz resolution (one bin per subcarrier) produces $2208 \mathrm{kS} / \mathrm{sec}$ sample rate.
- Minimum Annex A upstream 32-point IFFT with 4312.5 Hz resolution (one bin per subcarrier) produces $276 \mathrm{kS} / \mathrm{sec}$ sample rate.

Downstream PSD With Minimum Sample Rate

- Conversion of downstream signal to continuous-time at $2208 \mathrm{kS} / \mathrm{sec}$ produces in-band droop and significant standard's non-compliance.

Upstream PSD With Minimum Sample Rate (276kS/sec)

- Conversion of upstream signal to continuous-time at $276 \mathrm{kS} / \mathrm{sec}$ produces in-band droop and significant standard's non-compliance.

Impairments

- Loop attenuation
- Loop variability
- Crosstalk

26awg Loop Attenuation

Downstream PSD on 26awg Loops

Loop Variability

Loop Impedance

Bridged Taps

Far End Cross Talk (FEXT)

Near End Cross Talk (NEXT)

Far End Crosstalk Transfer Function (FEXT)

24-Self FEXT Example

Near End Crosstalk Transfer Function (NEXT)

1-, 10- and 24-Self NEXT Example

Frequency (Hz)

Line Coupling Circuit

- Splitter
- Active termination
- Hybrid

Splitter

- In the POT/ISDN frequency band, the high-pass, generally built into modem transformer circuit, presents high impedance to loop and reduces ADSL modem-generated noise.
- In the ADSL frequency band, the low-pass presents high impedance to loop and reduces POTS/ISDN-generated noise.

Annex B Splitter Low-Pass Example

- Very high quality (low distortion) components are required
- DC current feed (POTS) may not saturate transformers
- Cost is high, both the bill of materials and the PCB area

Active Termination

- Reduces driver power supply voltage requirement
- Downside: Reduces receiver gain by 20Log10[(1+g)]

On long loops, the echo power is greater than the receive power

$2^{\text {nd }}$ Order High-Pass with Passive Termination and Hybrid

$3^{\text {rd }}$ Order High-Pass With Passive Termination and Hybrid

3rd Order High-Pass With Active Termination and Hybrid

Active Hybrid Transfer Function

Hybrid Rejection Definitions

$$
\begin{aligned}
& \mathbf{R}_{\mathbf{H}}(\mathbf{e x p})=\mathbf{2 0 \operatorname { L o g } _ { 1 0 }}\left[\frac{\text { transmitter signal at tip/ring }}{\frac{\text { transmitter signal at receiver amplifer output }}{\text { received signal gain from tip/ring to receiver amplifier output }}}\right] \\
& \mathbf{R}_{\mathbf{H}}(\mathbf{t h})=\mathbf{2 0} \log _{10}\left[\frac{\text { transmitter signal at tip/ring when hybrid is removed }}{\text { transmitter signal at tip/ring when hybrid is present }}\right]
\end{aligned}
$$

Echo Response

$$
\mathbf{H}_{\text {Echo }}=20 \log _{10}\left[\frac{\text { transmitter signal at driver output }}{\text { transmitter signal at receiver amplifier }}\right]
$$

Hybrid Rejection Example

Transmitter Signal Path

- Over-sampling
- Managing PAR
- MTPR requirement
- Line Drivers

Downstream PSD With Minimum Sample Rate

- Conversion of downstream signal to continuous-time at $2208 \mathrm{kS} / \mathrm{sec}$ produces in-band droop and significant standard's non-compliance.

Upstream PSD With Minimum Sample Rate (276kS/sec)

- Conversion of upstream signal to continuous-time at $276 \mathrm{kS} / \mathrm{sec}$ produces in-band droop and significant standard's non-compliance.

Low-Pass Reconstruction Filter Architectures

(A) Nyquist rate DAC (Analog filter)

(B) Over-sampled DAC (Digital/Analog filter combination)

Helping Out the Central Office Hybrid

Digital High-Pass Output Spectrum

(downstream bin 32-255 employed)

Digital Low-Pass Filter Output Spectrum

Analog Low-Pass Filter Output Spectrum

Transmitter Template

- DHPF
- High order DHPF is critical to downstream transmitter signal suppression in FDD modems
- Reduced-NEXT compliance in echo-canceling modems employing non-overlapping spectra

- DLPF

- High order is critical to upstream transmitter signal suppression in FDD modems
- Interpolating stages increase sample rate, reducing signal droop and relaxing analog low-pass
-DAC
- Precision (<12 effective bits) depends upon analog filtering, hybrid rejection and receiver sensitivity
-AHPF
- Suppresses DAC noise/distortion in upstream band in FDD central office modems.
-ALPF
- Eliminates signal images centered at multiples of DAC sample rate.
- Suppresses DAC noise/distortion in downstream band in FDD client modems.

- Line Driver

- High voltage technology.
- Very low distortion required.

Managing Peak Signal to Average Signal Ratio

- Bit Error Rate is proportional to the frequency of signal clipping
- Clipping rate of gaussian signal is determined by PAR
- PAR is determined by circuit NOT a property of signal
- Managing PAR in digital or analog domains - node by node
- Usually desirable to limit the number of clipping nodes to one (driver)
- For given signal swing (volts or bits), PAR is increased (decreased) by decreasing (increasing) signal power
- For given signal power, PAR is increased (decreased) by increasing (decreasing) swing (volts or bits)

Missing Tone Power Ratio Test

- Equivalent of spurious free dynamic range in narrow band systems

FDD (EC) Central Office Example (frequency-independent echo response)
MTPRtx=65 (75)
MTPRrx=75 (75)

Virtue of High Voltage IC Processes

Client Reconstruction Low-Pass Filter Example
(138 kHz corner frequency, $-140 \mathrm{dBm} / \mathrm{Hz}$ noise in downstream band)

Class AB Output Stage

Class G Topology

- Multiple supply output stage
- For $\mathrm{V}_{\text {OUT }}$ low, current comes from $+\mathbf{5} \mathbf{V}$
- For $\mathbf{V}_{\text {OUT }}$ high, current comes from $+\mathbf{1 5} \mathbf{V}$
- Current is mostly drawn from low supply
- Challenge in DSL is low distortion at 1 MHz

Continuous Class G Circuit

"Zero Overhead" Class G Concept Block Diagram

"Zero Overhead" Class G Concept Waveforms

VPSW

ZOCG Design Challenges

- Peak prediction
- Analog signal blocks change peak positions and magnitudes
- Low voltage drop switches
- Mus swing as close as possible to the rail
- Shoot through currents
- Must minimize the time that switches to both supplies are on
- Switching edge coupling
- Changing supply AC can couple into signal output

Receiver Signal Path

- Signals
- Minimizing ADC requirements
- ADC precision
- PAR management

Receiver Noise/Distortion Floor

- Inherent loop noise
\cdot Loop impedance is $\boldsymbol{\sim} \mathbf{1 0 0} \mathbf{~ o h m s}$, corresponding to $<-\mathbf{1 7 3} \mathbf{~ d B m} / \mathbf{H z}$
- Measured loop noise is usually in the neighborhood of $\mathbf{- 1 4 0} \mathbf{~ d B m} / \mathbf{H z}$
- Central off ice noise is much higher
- ISDN, T1, SHDSL,
- Typical noise floor targets for ADSL front ends
- Central office: $\mathbf{< - 1 2 0 ~ d B m / H z}$ at loop
- Client: <-145 dBm/Hz at loop

ADC Resolution Versus Conversion Rate

Signal Power Reaching Receiver

Largest voltage on null loop: 11.2Vpp at client and 19.95 Vpp at central office

Minimum ADC Neff versus Conversion Rate

- Input voltages are too high to integrate - must reduce gain from loop to ADC
- Reducing channel gain drives ADC lsb too small

Received Input Peak-to-Peak Voltage versus Loop Length

Programmable Gain to the Rescue

- The noise floor targets were set using loop noise measurements, and represent reasonable goals for long loops where signals are small
- On short loops we only need noise floors sufficient to handle 15 bits per subcarrier, 12.5Neff
- Use programmable gain to increase the channel gain for small signals from long loop
- gives low channel gain when signals are large
- gives high channel gain when signals are small
- Remaining problem: the echo

Total Signal Power at Receiver

Largest voltage on null loop: 11.2 Vpp at client and 19.95 Vpp at central office

Killing the Echo

- Better

- Best

Receiver Architectures

Client

Central Office

Receiver Programmable Gain

- Receiver gain improves SNR only when the ADC quantization noise is dominant.
- Typically 20 dB gain will amplify the receiver analog noise above the ADC noise. Additional gain will not improve the SNR, so the typical programmable gain range is $\sim-20 \mathrm{~dB}$ to +20 dB at the remote terminal and $\sim-12 \mathrm{~dB}$ to +20 dB at the central office.

Equalization

- Equalization is frequency dependent gain
- Improves data rate when
- SNR is limited by noise source subsequent to equalizer
- Low-Frequency subcarrier SNR exceeds that required to support 15 b /frame
- Programmable gain should follow equalizer

Generic Template

- AHPF
- In client FDD modems, it may reject virtually all of the upstream echo power and enable higher PGA gain.
- Frequently employed in Annex B central office modem to reject ISDN power in front of PGA.
- Equalizer
- Provides frequency dependent gain to amplify weak high-frequency subcarriers above ADC noise.
- Not useful in central office receiver

-ALPF

- Provides anti-alias filtering for ADC.
- In central office FDD modems, it also rejects upstream echo and enables higher PGA gain.
-PGAs
- Placed both before and after filters when echo is rejected by integrated filter.
- ADC
- Resolution depends upon duplexing, EC being more demanding than FDD because echo power is dominant on long loops.

-DLPF

- Decimates sample rate to that of FFT.

Design Example: Echo-Canceling Central Office Modem

- Deviations from generic topologies
- Analog transmitter high-pass deleted to support echo cancellation
- Programmable attenuator added to support power cutback on short loops
- Programmable gain amplifiers precede and follow receiver analog low-pass to adjust signal to 3 Vpp before non-overlapping portion of echo is removed
- Equalizer is not necessary on central office receivers
- DSP sample rates
- $2208 \mathrm{kS} / \mathrm{sec}$ transmitter in full rate mode and $1104 \mathrm{kS} / \mathrm{sec}$ in "lite" mode
- 276kS/sec receiver

AD16

TRANSMITTER PATH

D/A Converter

Signal DAC Current Source Bias and Calibration

Transmitter Static Integral Non-Linearity

 (digital high-pass bypassed)

Receiver PGA/Low-Pass Combination

PSD at Input to Analog Low-Pass Filter

 (15kft, 26awg, $\mathrm{R}_{\mathrm{H}}=18 \mathrm{~dB}$)

PSD at Input to ADC

(15kft, 26awg, $\mathrm{R}_{\mathrm{H}}=18 \mathrm{~dB}$)

Pipelined Analog-to-Digital Converter

Stage 1 1.5b 8b trim	$\begin{array}{\|c\|} \hline \text { Stage } 2 \\ 1.5 \mathrm{~b} \\ 8 \mathrm{~b} \text { trim } \end{array}$	$\begin{aligned} & \text { Stage } 3 \\ & 1.5 \mathrm{~b} \\ & 7 \mathrm{~b} \text { trim } \end{aligned}$	Stage 4 1.5b 7 b trim	$\begin{aligned} & \text { Stage } 5 \\ & 1.5 \mathrm{~b} \\ & 7 \mathrm{~b} \text { trim } \end{aligned}$	Stage 6 1.5b no trim	- -	$\begin{gathered} \text { Stage } 12 \\ 1.5 \mathrm{~b} \\ \text { no trim } \end{gathered}$	$\left\lvert\, \begin{gathered} 2 \mathrm{~b} \\ \text { flash } \end{gathered}\right.$

$X \begin{aligned} & \text { represents CMOS switch } \\ & \text { conducting during clock phase } X\end{aligned}$

7-Bit Capacitor Trimming Array

Receiver INL

PSD at Output of Digital Low-Pass Filter (15kft, 26awg, $\mathrm{R}_{\mathrm{H}}=18 \mathrm{~dB}$)

Summary

- The ADSL AFE requirements depend upon multiple system parameters such as
- Duplexing method
- Upstream and downstream frequency allocations
- DSP transmit and receive sample rates
- Receiver sensitivity
- Hybrid rejection
- An AFE design example provides the optimum integrated solution for modems employing echo cancellation.

