Analog Front End Design For ADSL R. K. Hester Texas Instruments Incorporated Dallas, Texas, USA

Outline

- Canonical ADSL System Diagram
- Signal Characteristics
- Impairments
- Line Coupling Circuits
- Transmitter Design
- Receiver Design

ADSL System

Central Office

Remote Terminal

Unlike V.xx dial-up modems, the signal is not terminated by a voice-band line card

Signal Characteristics

- DMT modulation
- Frequency plan
- Capacity
- Peak-to-Average Ratio and BER
- Continuous-time/Discrete-time PSD

Discrete Multi-Tone Signaling (ODFM)

- Employs many narrow-band (4.3125 kHz) sub-carriers
- Low baud frequency (4 kHz)
- Data dynamically assigned to sub-carrier according to SNR
- IFFT/FFT used to modulate/demodulate in blocks

Frequency Plan

Frequency Division Duplexed

Echo-Cancelled

ITU G.hs training protocol guarantees FDD-EC modem interoperability

• Sub-carrier frequencies: n*4.3125 kHz

- Upstream n= 6, ..., 31
- Echo-canceling downstream n=6, ..., 255
- Frequency division downstream n= 33, ..., 255
- Modulation: 4QAM ... 32768QAM
- Subcarrier data rate capacity: 2-15 bits per baud period

Subcarrier Capacity versus SNR

Maximum 15kft 26awg Data Rate Capacity

More on Frequency Plan

Annex	Upstream	Downstream
• A (POTS)	6 - 31	6 (33) – 255
• A+	6 - 31	6 (33) – 511
• B (ISDN)	29 - 63	29 (60) - 255
• B+	29 - 63	29 (60) – 511
• C (TCM-ISDN) 33 – 63		33 – 255
• H (TCM-ISDN) 6 – 255		6 – 255
• I	1 – 31	1 – 255
• J	1 - 31 (63)	1 – 255

Peak-to-RMS Ratio

- Subcarriers are statistically independent, so sum of N has Gaussian probability distribution in time-domain, where variance is 0.43152* N volt².
- When N=250, the RMS signal is 3.28V, and a 16dB peak-to-RMS ratio corresponds to 41.4 $\rm V_{PP}$

Gaussian Signal Statistics

- Sub-carriers are statistically independent, so sum of N sub-carriers has Gaussian probability (central limits theorem)
- Signal clipping, either analog or digital, transmitter or receiver, wrecks SNR and creates transmission errors
- Must support signal swing that corresponds to desired bit error rate

Sub-Carrier Power Spectral Density (dBm/Hz)

Downstream PSD With Continuous Time Sub-Carrier Generation

DSP Transmitter Signal (Minimum Sample Rate)

- Minimum Annex A downstream 256-point IFFT with 4312.5Hz resolution (one bin per subcarrier) produces 2208kS/sec sample rate.
- Minimum Annex A upstream 32-point IFFT with 4312.5Hz resolution (one bin per subcarrier) produces 276kS/sec sample rate.

Downstream PSD With Minimum Sample Rate

• Conversion of downstream signal to continuous-time at 2208kS/sec produces in-band droop and significant standard's non-compliance.

Upstream PSD With Minimum Sample Rate (276kS/sec)

• Conversion of upstream signal to continuous-time at 276kS/sec produces in-band droop and significant standard's non-compliance.

Impairments

- Loop attenuation
- Loop variability
- Crosstalk

26awg Loop Attenuation

Downstream PSD on 26awg Loops

Loop Variability

Loop Impedance

Far End Cross Talk (FEXT)

Far End Crosstalk Transfer Function (FEXT)

24-Self FEXT Example

Near End Crosstalk Transfer Function (NEXT)

1-, 10- and 24-Self NEXT Example

Frequency (Hz)

Line Coupling Circuit

- Splitter
- Active termination
- Hybrid

- In the POT/ISDN frequency band, the high-pass, generally built into modem transformer circuit, presents high impedance to loop and reduces ADSL modem-generated noise.
- In the ADSL frequency band, the low-pass presents high impedance to loop and reduces POTS/ISDN-generated noise.

Annex B Splitter Low-Pass Example

- Very high quality (low distortion) components are required
- DC current feed (POTS) may not saturate transformers
- Cost is high, both the bill of materials and the PCB area

- Reduces driver power supply voltage requirement
- Downside: Reduces receiver gain by 20Log10[(1+g)]

On long loops, the echo power is greater than the receive power

2nd Order High-Pass with Passive Termination and Hybrid

3rd Order High-Pass With Passive Termination and Hybrid

3rd Order High-Pass With Active Termination and Hybrid

Active Hybrid Transfer Function

Hybrid Rejection Definitions

$$R_{H}(exp) = 20Log_{10} \left[\frac{transmitter signal at tip/ring}{transmitter signal at receiver amplifer output} \right]$$

 $R_{\rm H}(th) = 20 \text{Log}_{10} \left[\frac{\text{transmitter signal at tip/ring when hybrid is removed}}{\text{transmitter signal at tip/ring when hybrid is present} \right]$

Γ

Echo Response

 $H_{Echo} = 20Log_{10} \left[\frac{\text{transmitter signal at driver output}}{\text{transmitter signal at receiver amplifier}} \right]$

Hybrid Rejection Example

Transmitter Signal Path

- Over-sampling
- Managing PAR
- MTPR requirement
- Line Drivers

Downstream PSD With Minimum Sample Rate

• Conversion of downstream signal to continuous-time at 2208kS/sec produces in-band droop and significant standard's non-compliance.

Upstream PSD With Minimum Sample Rate (276kS/sec)

• Conversion of upstream signal to continuous-time at 276kS/sec produces in-band droop and significant standard's non-compliance.

Low-Pass Reconstruction Filter Architectures

(A) Nyquist rate DAC (Analog filter)

(B) Over-sampled DAC (Digital/Analog filter combination)

Helping Out the Central Office Hybrid

Transmitter Template

• DHPF

• High order DHPF is critical to downstream transmitter signal suppression in FDD modems

• Reduced-NEXT compliance in echo-canceling modems employing non-overlapping spectra

• DLPF

• High order is critical to upstream transmitter signal suppression in FDD modems

• Interpolating stages increase sample rate, reducing signal droop and relaxing analog low-pass

• DAC

• Precision (<12 effective bits) depends upon analog filtering, hybrid rejection and receiver sensitivity

•AHPF

• Suppresses DAC noise/distortion in upstream band in FDD central office modems.

•ALPF

- Eliminates signal images centered at multiples of DAC sample rate.
- Suppresses DAC noise/distortion in downstream band in FDD client modems.

Line Driver

- High voltage technology.
- Very low distortion required.

Managing Peak Signal to Average Signal Ratio

- Bit Error Rate is proportional to the frequency of signal clipping
- Clipping rate of gaussian signal is determined by PAR
- PAR is determined by circuit NOT a property of signal
- Managing PAR in digital or analog domains node by node
 - Usually desirable to limit the number of clipping nodes to one (driver)
 - For given signal swing (volts or bits), PAR is increased (decreased) by decreasing (increasing) signal power
 - For given signal power, PAR is increased (decreased) by increasing (decreasing) swing (volts or bits)

Missing Tone Power Ratio Test

• Equivalent of spurious free dynamic range in narrow band systems

FDD (EC) Central Office Example (frequency-independent echo response) MTPRtx=65 (75) MTPRrx=75 (75)

Virtue of High Voltage IC Processes

Client Reconstruction Low-Pass Filter Example (138kHz corner frequency, -140dBm/Hz noise in downstream band)

Class AB Output Stage

Class G Topology

•

•

•

.

•

MHz

Continuous Class G Circuit

"Zero Overhead" Class G Concept – Block Diagram

ZOCG Design Challenges

- Peak prediction
 - Analog signal blocks change peak positions and magnitudes
- Low voltage drop switches
 - Mus swing as close as possible to the rail
- Shoot through currents
 - Must minimize the time that switches to both supplies are on
- Switching edge coupling
 - Changing supply AC can couple into signal output

Receiver Signal Path

- Signals
- Minimizing ADC requirements
- ADC precision
- PAR management

Receiver Noise/Distortion Floor

• Inherent loop noise

•Loop impedance is ~100 ohms, corresponding to <-173 dBm/Hz

• Measured loop noise is usually in the neighborhood of -140 dBm/Hz

Central off ice noise is much higher
ISDN, T1, SHDSL,

• Typical noise floor targets for ADSL front ends

• Central office: <-120 dBm/Hz at loop

• Client: <-145 dBm/Hz at loop

ADC Resolution Versus Conversion Rate

Signal Power Reaching Receiver

Largest voltage on null loop: 11.2Vpp at client and 19.95Vpp at central office

Minimum ADC Neff versus Conversion Rate

- Input voltages are too high to integrate must reduce gain from loop to ADC
- Reducing channel gain drives ADC lsb too small

Received Input Peak-to-Peak Voltage versus Loop Length

Programmable Gain to the Rescue

- The noise floor targets were set using loop noise measurements, and represent reasonable goals for long loops where signals are small
- On short loops we only need noise floors sufficient to handle 15 bits per subcarrier, 12.5Neff
- Use programmable gain to increase the channel gain for small signals from long loop
 - gives low channel gain when signals are large
 - gives high channel gain when signals are small
- Remaining problem: the echo

Total Signal Power at Receiver

Largest voltage on null loop: 11.2Vpp at client and 19.95Vpp at central office

Killing the Echo

• Best

Receiver Architectures

Receiver Programmable Gain

- Receiver gain improves SNR only when the ADC quantization noise is dominant.
- Typically 20 dB gain will amplify the receiver analog noise above the ADC noise. Additional gain will not improve the SNR, so the typical programmable gain range is ~ -20dB to +20dB at the remote terminal and ~ -12dB to +20dB at the central office.

- Equalization is frequency dependent gain
- Improves data rate when
 - SNR is limited by noise source subsequent to equalizer
 - Low-Frequency subcarrier SNR exceeds that required to support 15b/frame
- Programmable gain should follow equalizer

Generic Template

- AHPF
 - In client FDD modems, it may reject virtually all of the upstream echo power and enable higher PGA gain.
 - Frequently employed in Annex B central office modem to reject ISDN power in front of PGA.
- Equalizer
 - Provides frequency dependent gain to amplify weak high-frequency subcarriers above ADC noise.
 - Not useful in central office receiver
- •ALPF
 - Provides anti-alias filtering for ADC.
 - In central office FDD modems, it also rejects upstream echo and enables higher PGA gain.
- •PGAs
 - Placed both before and after filters when echo is rejected by integrated filter.
- ADC
 - Resolution depends upon duplexing, EC being more demanding than FDD because echo power is dominant on long loops.
- •DLPF
 - Decimates sample rate to that of FFT.

Design Example: Echo-Canceling Central Office Modem

• Deviations from generic topologies

- Analog transmitter high-pass deleted to support echo cancellation
- Programmable attenuator added to support power cutback on short loops
- Programmable gain amplifiers precede and follow receiver analog low-pass to adjust signal to 3Vpp before non-overlapping portion of echo is removed
- Equalizer is not necessary on central office receivers
- DSP sample rates
 - 2208kS/sec transmitter in full rate mode and 1104kS/sec in "lite" mode
 - 276kS/sec receiver

D/A Converter

Signal DAC Current Source Bias and Calibration

Transmitter Static Integral Non-Linearity

(digital high-pass bypassed)

Receiver PGA/Low-Pass Combination

PSD at Input to Analog Low-Pass Filter (15kft, 26awg, R_H=18dB) - 40 - 60 PSD (dBm/Hz) - 80 - 100 Echo - 120 Signal - 140 2×10^{6} 500000 1 × 10⁶ 1.5 × 10⁶ Frequency

Pipelined Analog-to-Digital Converter

7-Bit Capacitor Trimming Array

Receiver INL

PSD at Output of Digital Low-Pass Filter (15kft, 26awg, R_H=18dB)

Summary

- The ADSL AFE requirements depend upon multiple system parameters such as
 - Duplexing method
 - Upstream and downstream frequency allocations
 - DSP transmit and receive sample rates
 - Receiver sensitivity
 - Hybrid rejection
- An AFE design example provides the optimum integrated solution for modems employing echo cancellation.