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Outline

• Motivations & CoPEC directions
• “Buffalo switcher”

– Complete 1 MHz digital PWM controller IC
– Hybrid digital PWM
– Delay-line A/D

• CoPEC research highlights
• Education:

– focus on power electronics & mixed-signal IC 
design
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Power Electronics Applications
Portable devices 
• On-chip power management /mW
• Power supplies for LCD-s / hundreds of mW
• Switching voltage regulators/ up to tens of Watts

Computers and Consumers Electronics 
• Power supplies for components/ several watts
• Micro-processor supplies: Voltage Regulator 

Modules (VRMs)/ up to hundreds of Watts 
• Off-line power supplies / up to kW

Telecomm. equipment

Industrial

Automotive

Lighting (HID, fluorescent)

Aerospace
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Buck Switching Converter Example

• Switching operation controls the average value of vD

• LC low-pass filter reduces the voltage ripple in the dc output Vout

• High switching frequency (hundreds of kHz to MHz), small size
• Ideally lossless, very high efficiency in practice
• Tightly regulated Vout through a feedback loop
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Controller Implementation: Analog vs. Digital
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Research Motivation – Why Digital?

• Analog PWM controllers (30 year old technology)
• Simple, low-cost
• Well established design practices

• What can be accomplished with digital control in power 
electronics applications?

• Programmability (e.g. one controller can serve a much 
wider range of applications)

• Elimination or reduction of the number of passive 
components

• System integration (e.g. dynamic voltage scaling), 
diagnostics, etc.

• Static and dynamic performance (e.g. through adaptive 
control techniques)

• Reduced sensitivity to tolerances, process and 
temperature variations

• Reduced cost
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Practical Limitations

• A/D –A complete analog controller 
could be simpler than a high-speed, 

high-resolution A/D

• Processing unit -Available 
microcontroller/DSP systems are still 

too slow, or too complex/costly

• DPWM – High-speed/ High-resolution 
(ns) digital pulse width modulators are 
needed

New design and implementation approaches for all functional
blocks are needed 

text
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CoPEC Research Program
Power Electronics and Mixed-Signal IC Design

Hardware-
accelerated

computational
unit

Small, fast,
scalable A/D
converters

Programmable
digital

modulators Serial I/O

Standard µC or DSP core and peripherals

Switching power converter

Digital SMPS controller

System interface
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Pin Pout
Gate-drive waveforms Voltage/current sensing

New converter configurations tied 
to more sophisticated control 
techniques

New SMPS-specific 
controller building 
blocks

New controller 
architectures for 
wide range of 
applications

New control algorithms
• parameter/state estimation
• adaptive control
• nonlinear control, etc.
Modeling techniques

Converter/controller co-design for 
significant gains in performance, size 
and/or cost:
• reduced size of passive components
• improved efficiency
• improved dynamic responses, etc.
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Examples of CoPEC Research Results

• Complete 1 MHz digital PWM controller IC
– small size, programmable compensator, no discretes

• Standard-cell based A/D converter ICs
– small size, fast sampling, scalable with digital technology

• Digitally controlled 3.3 V, 20 A DC power supply
– chipset for isolated DC power supplies

• Digital predictive current-mode control
– very fast response
– applications to PFC and DC-DC converters

• Digitally-controlled power-factor correction rectifiers
– order-of-magnitude improvement in dynamic response
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Buffalo Switcher

External
memory

Hybrid
DPWM

Delay-line
A/D

Compensator
(look-up table)
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+
–

+

_

fs = 1MHz Vsense

L

C

Delay-line A/D

DPWM, Compensator,  
Memory interface

• 1 MHz switching frequency
• Programmable compensator
• 0.5µ CMOS technology
• Chip area:  0.96 mm2

• All-digital, HDL-based design
• Standard digital design flow:

• HDL (Verilog) based design
• Synthesis to standard-cell gates
• Automated place & route

Complete High-Frequency Digital 
PWM Controller IC
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Chip architecture
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A/D requirements

Static voltage regulation � Vq ≤ ∆Vo

Dynamic voltage regulation � small conversion range   

Only a few 
digital error 
outputs 
needed 
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Delay-line A/D
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Delay-line A/D Operation
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conversion

End 
conversion
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Delay-line A/D Experimental Results

Vq = 53mV, σ = 3.6mV
fs = 1 MHz sampling

Vref Vref +0.1 V Vref +0.2 VVref – 0.1 VVref – 0.2 V

0

+1

+2

+3

+4

–1

–2

–3

–4

Vsense

e

Vq

Error e

Sampled output voltage Vsense

Zero-error bin

Advantages:
• Small area/low power
• Averaging over 

conversion time
• All digital 

implementation
Problem:
• Basic configuration is 

highly susceptible to 
process/temperature

• How to implement 
calibration to a reference 
voltage?
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Strobe-Calibrated Delay-Line A/D

• Delay blocks constructed with standard cells
• Matched “strobe delay” added to provide self-

calibrated reference point

delay
block

1
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delay
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delay
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D
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D
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reset
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Strobe-Calibrated Delay-Line A/D Exp Results

• 1.8 V reference
• 250ns typical 

conversion time (500ns 
worst case)

• Standard-cell HDL-
based design, 0.5µ
CMOS process

• Automated place-and-
route of primary and 
matched delay lines

• Tested over the 
temperature range from 
-40ºC to 100ºC
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Strobe-Calibrated Delay-Line A/D Exp Results 

• Average offset: 1.56mV 
(4% LSB)

• 11 of 18 chips < 2 mV 
offset

• Good performance holds 
over temperature

• The worst offset prototype 
chip of 18 samples at the 
worst temperature corner: 
-7.3 mV offset

• Total current 
consumption: 
– less than 100 µA

Histogram of the measured offset over 
18 prototype chips
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Look-up Table Based 
Programmable Compensator

Programmable compensator

External memory

e[n]

e[n-1]

e[n-2]

d[n]

+
d[n+1]

Ts Ts

Ts

Table A

Table B

Table C

Error 
from
A/D

Duty-cycle
to 

DPWM

PID compensator: d[n+1] = d[n] + a e[n] + b e[n-1] + c e[n-1]

Table A Table B Table C

8-bit

•“Zero” steady-state error
•Programmable response
•Very small area, very low power
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Conventional Counter-based DPWM Design

s
N

clk ff DPWM ⋅≥ 2

fsw: switching frequency
fclk: processor clock frequency
nDPWM: number of bits of DPWM

10-bit @ 1 MHz => 1 GHz clock signal!?

Comparator
in=A

A Comparator
in=0

N-bit Counter
clock

Reset Set

Incr.

DPWM

nDPWM

d[n]
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High-Resolution Hybrid DPWM
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Conventional DPWM:
fclk = 2n ⋅ fs

Hybrid DPWM:
fs ≤ fclk ≤ 2n ⋅ fs

Prototype:
n = 8 bits
fs = 1 MHz
fclk = 8 MHz

Combines a delay line (ring oscillator) with a counter to reduce the 
maximum clock speed
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DPWM Experimental Results
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High-Resolution Hybrid DPWM

Conventional DPWM:
fclk = 2n ⋅ fs

n = 8 bits
fs = 1 MHz
fclk = 256 MHz

Hybrid DPWM:
fs ≤ fclk ≤ 2n ⋅ fs

Buffalo switcher hybrid 
DPWM prototype:

n = 8 bits
fs = 1 MHz
fclk = 8 MHz

Hybrid DPWM combines a delay line (ring oscillator) with a 
counter to reduce the maximum clock speed
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4-bit hybrid DPWM example
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10-bit DPWM With Programmable Frequency

Delay- line/counter combination  provides low power consumption, low 
on-chip area and high resolution at high frequencies
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10-Bit Hybrid DPWM Implementation 

• 10-bit resolution

• Programmable switching 
frequency: 750 kHz, 400 kHz, 
200 kHz and 100 kHz/ 1.3 ns 
resolution

• 32 times higher clock frequency

• 0.5µ CMOS

• Active chip area: 0.16 mm2

• Completely HDL coded
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Experimental Digitally Controlled Power Supply

L = 1 µH, C = 22 µF

4 V < Vg < 6 V

Vo = 2.7 V +/- 25 mV

0 < Io < 1.5 A

fs = 1 MHz
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Experimental Results
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Conclusions

• Complete 1 MHz digital PWM controller IC
• New architecture and HDL-based design of the key building 

blocks: 
– Calibrated delay-line A/D
– Programmable look-up table compensator
– Hybrid DPWM

• Small area, low power, fast response 
• Design scales with digital technology
• Open possibilities for a new generation of controller ICs 

(standard parts and ASICs) for power electronics
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• Opto-coupler operates in linear 
mode

Digital solution based on serial communication

Primary sideVin
Secondary

side C

1:n vout
+

Isolated DC-DC switching converter

Modulator Hvout

Opto-coupler

c(t)
+ -

Vref

e(t)
H

load

Analog implementation

Extension: Digital Chipset for Isolated Power Supply

Primary sideVin
Secondary

side C

1:n vout
+

Isolated DC-DC switching converter

Hc(t)
Hvout

Opto-coupler

A/DTx
Vref[n]

e[n]

Rx

DPWM

regulator
e[n]

• Opto-coupler operates in digital 
mode (as a logic gate)

• Transfers just the error signal

• Potential for less conservative 
design of the feedback loop
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fsel[1:0]
DPWM

Regulator

Primary side IC

d[n]
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Serial
receiver
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16 x fsw clk_out

ser_in

oc1

oc2

Serial
transmitter

ser_out

+

Secondary side IC

Vrefclk_in
e[n]

Isolated DC-DC: Test System 

Tyco HW 100F

• Isolated converter 

• 36 V ÷ 72 V to 3.3 V

• up to 20 Amps load

• 400 kHz switching 
frequency

• Replaced original analog 
current-mode controller on 
the board
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Experimental Results

load current

output voltage

50% load current

output voltage

25%25%
50%

Original analog controller Digital controller IC set
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Digital Controller for AC/DC PFC
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PFC Experimental Results (current loop)

Switching frequency: 200KHz
THD: 2.2%

Line frequency: 800Hz

Switching frequency: 100KHz
THD: 2.4%

Dead-beat digital current mode control: near-perfect PFC 
even in demanding next-generation avionics applications 
(AC system with the line frequency up to 800 Hz)
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PFC Experimental Results (voltage loop)

With STCF

Conventional 
voltage loop

Output voltage

Load current

Line current

High-bandwidth loop with and 
without a notch filter

With comb

Without comb
THD > 20%

THD = 4.3%

Output voltage

Load current

Line current
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Other CoPEC Research Projects (2003)

• Advanced digital control of DC-DC converters
� High-performance predictive digital current-mode control for DC-DC converters 

(TI)

• Power management for low-power electronics
� Digital DC-DC switcher for battery-powered systems (NSC)
� Adaptive DC-DC converters for RF power amplifiers (DARPA)
� Adaptive DC-DC converters and power management architecture for base-band

µP/DSP (NSF, NSC)
� Energy harvesting for wireless sensors and Implantable sensors for neuronal 

recording (Coleman Institute)

• Microprocessor power supplies
� Multi-phase digital controller for microprocessor power supplies (Artesyn)

• Off-line switching power supplies
� Modular mixed-signal control for electronic ballasts (GE)
� Digital controllers for solar/utility power system (Philips)
� Digitally controlled matrix converters for wind power system (NREL)
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CoPEC Educational Program Objectives

• Strong undergraduate and graduate programs in 
power electronics and mixed-signal IC design

• Internship and job opportunities for students
• Continuing education

– Courses available through CATECS
– Certificate program in power electronics

• Technology transfer to CoPEC sponsors
– Jointly defined and directed projects
– Access to CoPEC IP
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Growth of Program: Enrollment
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Our visibility is increasing, and we are attracting more students to the 
power electronics and micro-electronics areas

Enrollment for Analog IC Design, Spring 2002: 31, Spring 2003: 66
Enrollment for Mixed-Signal IC Design, Fall 2002: 15 
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Growth of Program: Graduate Students

With increased visibility and availability of projects, we are able to 
attract better students into our program

Power Electronics Program
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Mixed-Signal IC Design Flow
System/Application Specification

IC Specification

IC Functional Description
Analog/Digital Distribution

Functional Analog
Circuit & Verilog-A

Functional Digital
Verilog/VHDL

Complete Analog Synthesis

Complete Design

Layout
Custom, Place & Route, DRC

Tape-Out

Verification
LVS, Extraction

Mixed-Signal
Simulation Digital

Sim
Analog

Sim

4228/5008: Analog IC
• Spring 2003
• Analog portion only

5007: Mixed-Signal IC
• Fall 2003
• Full System
• Emphasis on mixed blocks
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Analog IC Course Outline

• Week 1: Review circuits I-II
• Text Ch. 1, Appendix A & C; Supplementary notes

• Week 2: Review CMOS technology and device models
• Text Ch. 2-3

• Weeks 3-4: Analog CMOS sub-circuits
• Text Ch. 4

• Weeks 5-7: CMOS amplifiers
• Text Ch. 5 

• Weeks 8-10: CMOS operational amplifiers
• Text Ch. 6 

• Weeks 11-13: High-performance CMOS op-amps
• Text Ch. 7 

• Weeks 14-15: Comparators and select advanced topics
• Text Ch. 8, Supplementary notes

Text used: Allen/Holberg, Gray/Meyer, Johns/Martin
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Mixed-Signal IC Lecture Topics
Comparators
• 2-stage amp, hysteresis, latched, high-speed
Sample & Hold Circuits
Discrete-Time Signals (Fundamentals)

Sampled-Data Circuit Techniques
• SC & SI Circuits: Filter Design, Amplifiers, 

Applications
• Non-idealities: clock-feedthrough, matching

Data Converters
• Fundamentals
• Nyquist Rate D/A, A/D
• Oversampling Converters

System Level IC Design
• System Description & Specification
• IC Functional Specification
• Top Down & Bottom Up Methodologies
• System Planning: fabrication options, foundry 

selection, silicon area estimation, packaging 
options, prototype and production cost & time 
estimation

• Design for Testability
• Reviews: data sheet preparation, design reviews, 

risk analysis

System Simulation
• Software Preparation: technology files, model 

files, standard cell libraries, software setup
• Functional Simulation: Verilog-A and Verilog 

HDL languages, hierarchical designs with multiple 
cell-views

• Mixed-Signal Simulation: co-simulation of analog 
& digital, functional and circuit level blocks in the 
Cadence tools

• Ballast Controller & PLL Case Studies

Physical Layer (time & setup permitting)
• Floorplanning & Layout: custom and semi-custom 

layout in Cadence
• Practical Considerations: matching, digital/analog 

isolation, latch-up, ESD and pad design, power 
distribution, noise coupling

• Verification: LVS, DRC, extracted simulation
• Fabrication: GDSII extraction to foundry
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Mixed-Signal IC Final Project

• Select a mixed-signal project that targets a specific application
• Work in teams of 1 to 4
• Deliverables include:

• Proposal: Create a final project website with an overview of the target 
application, preliminary IC specifications, and a functional description 
of the digital & analog IC blocks – Due Oct 17

• Functional Design Review: In-class presentation on your results to 
date, which must include system level simulations verifying your
functional blocks in the application environment.  Simulations must 
include at least one block of each: Verilog-A, Verilog or VHDL, and a 
circuit level block.  Include your presentation and simulation files on 
your project website.  Reviews Scheduled Nov 5-14

• Final Design Review: Final in-class presentation on your project.  The 
complete “front-end” design of the projects must be complete, ready 
for transition to a layout engineer.  Time permitting, various phases of 
layout and verification may be required as well. 

Local Industry Involvement (?)
• Suggest relevant project/research topics
• Be involved with design and/or final 

reviews
• Fund fabrication of best designs � hold 

competition?
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