Introduction to Copper / Low-*K* Interconnects & Electromigration Fundamentals

Alvin L.S. Loke¹ & Tin Tin Wee² ¹ Agilent Technologies, Fort Collins, CO ² Chartered Semiconductor Manufacturing, Singapore

IEEE Solid-State Circuits Society September 12, 2003

Outline

- Conventional Interconnect Technology
- Copper / Low-K Interconnects
 - Fundamental Motivations
 - Technology Challenges
 - Integration
 - Manufacturing Issues
 - Summary
- Electromigration Fundamentals
- Summary / Future Trends

Evolution of Interconnect Technologies

Where is the transistor?

1st Fabricated IC (Texas Instruments, 1958) 0.25µm Technology (Motorola, 1996) 90nm Technology (TSMC, 2002)

Scaling & interconnect density / number of metal layers

Alvin Loke Agilent Technologies

Aluminum Alloy Technology

Metal Fabrication

Interconnect Scaling – Performance Limiter

Limitations with Al/SiO₂ Technology

- wire (RC) delay
- reliability
 - electromigration
 - stress migration
- power dissipation
- crosstalk noise
- cost

Materials Solutions

- copper
 - \rightarrow R \downarrow , reliability \uparrow
- low-*K* dielectric \rightarrow C \downarrow , power dissipation \downarrow , crosstalk \downarrow

Copper Processing Challenges

Issues

- copper is difficult to dry-etch
- copper diffuses quickly in Si and SiO₂
 - $\rightarrow~$ junction & dielectric leakage $\uparrow,$ carrier lifetime $\downarrow~$

Solutions

- pattern using Damascene (inlaid) scheme
- encapsulate copper wires/vias with diffusion barriers

First Declarations of Manufacturable Copper Process Technology

- Announcements accelerated industry-wide commitment to switch to copper interconnects
- First incorporate copper with oxide, then introduce low-*K* dielectrics

Alvin Loke Agilent Technologies

Dual Damascene Technology

Alvin Loke Agilent Technologies

Trench-First Approach

Alvin Loke Agilent Technologies

Full-Via-First Approach

Alvin Loke Agilent Technologies

Lithography Issues

- wafer planarity for maximum depth of focus
 - resist thickness variation \rightarrow poor CD control
 - limits extendibility of via photo in trench-first approach
- reflective notching for CD control
 - need anti-reflective films in dielectric stack or spin-on organic BARC
 - · less effective if underlying topography is present
- overlay error between trench & via masks
 - big issue in buried-etchstop & trench-first
 - misalignment decreases size of via landing as well as intervia and/or intrametal spacing
 - · least severe in full-via-first
 - only intrametal spacing misaffected
 - may ultimately limit scalability of dual damascene

Dielectric Etch Issues

- trench etch selectivity to stop layer
 - need to control microloading & trench bottom profile
 - big issue in buried-etchstop
- resist stripping
 - need to remove before exposing copper since resist is difficult to strip without oxidizing copper
- BARC stripping
 - · difficult to remove fence residues in full-via-first
- excessive faceting from unmasked nitride etch
 - some desired for easier barrier & copper seed fill
 - over-faceting reduces intrametal spacing \rightarrow leakage
- copper resputtering onto via sidewall
 - must avoid copper trapped outside barrier which could diffuse into dielectric
- unlanded via fangs from unselective nitride etch
 - poor barrier/seed coverage \rightarrow poor reliability

Barrier & Copper Seed Deposition

Step 1: Barrier Deposition (Ta, TaN, TiN)

- prevent diffusion of copper from trench/via into Si or SiO₂
- adhesion layer for copper to dielectric
- must be thin to preserve conductivity advantage of copper
- CVD or directional PVD (e.g., ionized metal plasma (IMP))

Step 2: Copper Seed Layer Deposition

- conductive layer for copper e-plate fill \rightarrow better within wafer uniformity
- control of plated copper film grain size & texture \rightarrow better reliability
- CVD or directional PVD (e.g., ionized metal plasma (IMP))

Important to have conformal barrier & seed layer to ensure good fill.

ideal step coverage

typical step coverage

Alvin Loke Agilent Technologies

Barrier & Copper Seed Deposition Issues

Courtesy of Solid State Technology

Alvin Loke Agilent Technologies

Copper Electroplating Fundamentals

Basic Principle

- immerse wafer into solution of copper ions
- cathode clamped to wafer edge
- apply potential between cathode & anode to plate copper on wafer

 $Cu^{2+} + 2e^- \rightarrow Cu^0$

Copper Plating for IC Application

- most popular method for copper fill
- cheap
- optimized tool, plating bath & current for good gapfill & deposition uniformity e.g., careful diffuser design to compensate for intrinsic edge-fast deposition
- post-plating anneal required to accelerate room-temperature self-annealing of plated copper
 - \rightarrow better grain size control for CMP

Copper electroplating for IC's pioneered by IBM

Techniques for Good Plating Gapfill

Want *superfilling* (bottom-up deposition)

1. Pulsed Plating Current Waveform

- simultaneous deposition-etch
- · improve diffusion of copper ions into via

2. Organic Additives in Plating Bath

brightener

- enhance deposition rate in via & trench
- small organic molecules

leveler

- retard deposition rate at open field corners
- large organic macromolecules

Copper CMP Fundamentals

Basic Principles

- planarize wafer surface
- remove excess copper & metal barrier from wafer field to form inlaid copper
- removal rate depends on pad pressure, pad velocity, selectivity of slurry chemistry & mechanical abrasion

Basic Process

- 1. bulk copper removal
 - stop on barrier
- 2. barrier removal
- 3. oxide buff
 - reduce defects
 - apply corrosion inhibitor
- 4. post-CMP scrub
 - remove slurry residues
 - clean surface
 - dark ambient to suppress galvanic copper deposition

CMP technology pioneered by IBM

Copper CMP Issues

copper dishing in wide metal lines

oxide erosion in dense metal lines

Good planarity is very critical for multilevel integration!!!

- minimize metal residues at higher metal levels
- essential to optimize process conditions, polishing pad & slurry chemistry while maintaining practical removal rates

post-CMP topography

metal residue!!!

CMP Layout/Pattern Density Effects

Alvin Loke Agilent Technologies

Interconnect *Dummification*

- Add dummy patterns to open spaces to minimize layout density variations
 - \rightarrow Minimize R_s variation
 - \rightarrow Minimize surface topography (depth of focus, metal residues)
 - \rightarrow Added design complexity to check layout density & insert dummy patterns

• Also critical to step dummy dies along wafer circumference

Alvin Loke Agilent Technologies

Dielectric CMP

- Original motivation for CMP development at IBM
- Dummification also required for active & poly layers
 - Planarity important since metal layers build on top of polished dielectrics
- STI (shallow trench isolation)

Alvin Loke Agilent Technologies

Electrical Monitoring of CMP Performance

Compare resistances of lines with various adjacent patterns.

Motorola (1998)

- no adjacent lines, i.e., isolated
 - worst-case low pattern density
 - lots of Cu in field area to remove
- minimum-pitch adjacent lines
 - prone to dielectric erosion

- wide adjacent lines, e.g., bus
 - · wide lines very prone to dishing
 - erosion of dielectric supporting tested line

Post-CMP Inline Electrical Testing

Motivations

- measuring metal leakage after each copper CMP step can identify wafers with copper or barrier residues that need CMP rework
- monitoring of dishing & erosion with various test structures

Limitations

- contact on copper bondpads not reliable
- increased contact overdrive of probetips creates copper debris
- essential to minimize overdrive & maintain probecard with clean / planar tips
- test structure is very dependent on surrounding pattern density
- throughput

Recent Development

sensitive optical detection of metal residues (contactless)

Potential Fab Contamination Concern

- high tool costs require some tool sharing between copper & non-copper processes, e.g., lithography, metrology
- wafer handling by copper tools adds Cu to wafer backside
- shared tools can cross-contaminate frontend tools through common wafer handling of copper & non-copper wafers

SMIF pod

Moving to Low-K Dielectrics

- Damascene Cu integration with lower K dielectrics for reduced capacitance
- Migration to FSG only an incremental improvement
- Plenty of new integration & reliability issues beyond FSG due to fundamental differences in materials properties
- Plenty of early demonstrations in 1990's, but not manufacturable until recently

Alvin Loke Agilent Technologies

What Makes K Low?

- $K = dielectric constant = relative permittivity = \epsilon / \epsilon_o$
- K measures an insulator's polarizability when exposed to an electric field
- Low $K \rightarrow$ weak polarization (difficult to induce dipoles)

- Materials with low *K* have:
 - Weakly polar chemical constituents
 - High porosity ($K_{AIR} = 1$)
 - Minimal / no moisture content ($K_{WATER} = 80$)
 - High degree of structural symmetry for dipole cancellation

Low-K Materials Choices

- FSG / F-TEOS (K=3.2-3.9) first generation low-K, just incremental
 - Fluorine reduces polarity of bridging oxygens in glass undoped TEOS (*K*=4.0-4.2)
 - Moisture uptake if % F is too high, K > 3.5 for stable film
 - Weaker adhesion to metals & dielectrics, potential corrosion
- Nonporous organic polymers / open-structure glasses spin-on vs. CVD
- Porous materials (K<2.5)
 - Porous MSQ (methyl silsesquioxane) most extensively developed so far
 - e.g., AMAT Black Diamond, Novellus Coral® (contains Si, O, C, H)
- Conservative industry favoring CVD of porous silicate-based material although some companies invested heavily in spin-on pure organics

Alvin Loke Agilent Technologies

Low-K Materials Limitations

- Introduces significant integration complexity
- Mechanically weak (low Young's modulus)
- Softness \rightarrow CMP compatibility
- Thermal stability \rightarrow limited process options
- Thermal conductivity \rightarrow reliability
- Adhesion (intrinsic to low K) \rightarrow delamination, interface leakage
- Porosity \rightarrow moisture uptake
- Wet chemical clean compatibility \rightarrow surface treatments
- Dry etch / ashing compatibility \rightarrow hard masks, plasma damage

Why is Low-K Integration So Tough?

- Not just a simple matter of replacing oxide/FSG with low-K dielectric
- Lots of integration issues
 - Lithography (resist poisoning, multilevel planarity)
 - Damage-free etch & resist ashing (dielectric hard masks & etch stops)
 - Void-free & low-stress Cu plating
 - Scaling higher-ρ barrier & higher-K dielectric liner thicknesses (atomic layer deposition)
 - CMP compatibility (low down-force with minimal dishing, polish stops)
 - Impact on Transistors (high-K gate integration, NBTI)
 - Packaging (mechanical integrity, delamination, thermal budget)

• ...

Reliability Even Tougher...

- Electromigration along weak interfaces •
 - need surface/interface treatments
- Via stress migration voiding
 - HUGE PROBLEM
 - backend/package heat cycles •
 - barrier delamination, metal stresses ٠
- TDDB •
 - time-dependent dielectric breakdown
 - leakage from dielectric wearout •
- Interface control is key!!!

What is Electromigration?

• Major wearout failure mode for IC interconnects \rightarrow reliability issue

Metal void \rightarrow open circuit

Metal hillock \rightarrow short circuit

Nix *et al.* (1992)

- Mass transport in electrical conductor due to momentum exchange between large flux of conducting electrons and diffusing metal atoms
- Fundamentally a materials problem
- Phenomenon discovered by Gerardin (1863) in liquid metal alloys

Why Does Electromigration Happen?

- At high current densities, "electron wind" imparts momentum onto metal atoms during scattering events or collisions
- Mass transport or self-diffusion of metal atoms
 - \rightarrow atomic densities (ρ) deviate from equilibrium (ρ_0)
 - \rightarrow regions of tensile & compressive stress in metal
 - \rightarrow atomic bonds experience tensile & compressive strain
- Void forms when tensile stress in metal is so high that it is thermodynamically more favorable to form void instead of sustaining build-up of tension in metal
- Hillock forms when compressive stress in metal is so high that surrounding dielectric/barrier encapsulation can no longer resist further build-up of compression in metal
- Understanding mechanical stresses is key to designing EMresistant interconnects

Some Mass Transport Physics

• Driving Forces for mass transport

$$F = \nabla \mu = F_{EM} + F_{TM} + F_{\sigma} + F_{S}$$

- F_{EM} = migration due to electron wind (electromigration)
- F_{TM} = migration due to temperature gradient (Soret effect)
- F_{σ} = migration due to stress gradient (creep or stress migration)
- F_S = migration due to entropy (atomic concentration)

Diffusion Paths

• Metal self-diffusion is a thermally activated process

 $D = D_0 \exp\left(-E_A / k_B T\right)$

- Generally, $D \downarrow$ as $E_A \uparrow$
- E_A depends on diffusion path
 - Lattice / bulk diffusion
 - Grain boundary diffusion $\sim 10 k_B T_{MELT}$
 - Surface / interface diffusion ~ 7 $k_B T_{MELT}$

- Electromigration slowest when bulk diffusion dominates
 - High T_{MELT} metals \rightarrow copper, refractory metals (W, Ta)
 - Large grains (bamboo structure) \rightarrow cut off grain boundaries paths
 - Passivate surfaces/interfaces \rightarrow cut off rapid diffusion paths

Black's Equation

$$t_{50} = (A / j^n) \exp(E_A / k_B T)$$

- t_{50} = median TTF (time-to-failure)
- *A* = constant (depends on microstructure)
- j = current density
- $n = \text{current density exponential } (n = 1-2 \text{ typical}) \rightarrow \text{growth / nucleation}$
- E_A = activation energy \rightarrow diffusion path
- k_B = Boltzmann's constant
- *T* = absolute temperature

Reliability Engineering

- Al / oxide
 - 0.5% Cu doping in AI typical to plug up grain boundaries
 - Incubation period in EM failures
 - Large grains with (111) orientation
 - Minimize flux divergence / scattering
 - Special seed layer requirements
 - Encapsulation by compressive dielectric
- Damascene Cu / oxide & Cu / low-K
 - Stress reduction in plated films
 - Interface sealing with surface treatments
 - Conformal Barrier coverage
 - Large grains with (111) orientation
 - Minimize flux divergence / scattering
 - Special seed layer requirements
 - Mechanical rigidity

Electromigration Testing

- Accelerated testing of many lines at higher temperatures & current densities
 - Record line time-to-failure (*TTF*), e.g., defined as time for line resistance to increase by some % due to voiding
 - Extrapolate some conservative TTF (e.g., 0.1 percentile) to nominal IC operating conditions using Black's equation
- Very statistical in nature \rightarrow want high *TTF* **AND** small σ_{TTF}
- Compare different types of test structures to exercise different weak spots in interconnect structure
 - Via EM very significant (current crowding, weak interfaces)

EM Test Structure Examples

Alvin Loke Agilent Technologies

How Do These New Interconnect Technologies Impact Designers?

- More to worry about... like there isn't enough in design alone
- Design must account for process limitations
 - Greater process variations (in addition to voltage & temperature)
 - CMP constraints
 - Yield considerations
 - Reliability considerations (electromigration)
- Design rule complexities
 - Layout density checks / dummification
 - More conservative rules, e.g, redundant vias
 - Metal slot / maximum line width rules
 - Mechanical integrity, e.g., sea of vias to support large bondpads

Summary / Future Trends

- Limitations with aluminum interconnect scaling has forced industry-wide migration to on-chip copper metallization.
- Dual-damascene copper interconnect processes with FSG now in mass production.
- Leading IC manufacturers on track to successfully integrate true (non-FSG) low-*K* dielectrics, some migrating to single damascene copper.
- *K* scaling has not kept pace with forecasted IC roadmaps due to materials integration challenges.
 - Pressure to recover performance from higher performance transistors (e.g., with strained Si, high-*K* dielectrics, SOI)
- Interconnect reliability much more challenging but performance bar is much higher than before.
- Industry trend is to integrate more porous low-*K* with copper in 300mm.

Acknowledgments

- Chintamani Palsule (Agilent)
- Module Engineers & Managers (Chartered)
- Jeff Wetzel (TEL)
- Simon Wong (Stanford)
- Jim Pfiester (Agilent)
- Jim Lloyd (IBM)
- Joe McPherson (Texas Instruments)
- Nobuyoshi Kobayashi (SELETE)