Monolithic Instruments (New opportunities for wafer fabs) November 12, 2003

Jeremy Theil Agilent Technologies (jeremy_theil@agilent.com, tel: 408 553-4495)

Outline

- Trend in Manufacturing and Instrumentation
- Definition of Monolithic Instruments
- Examples
 - Elevated Photodiode Arrays
 - OLED Microdisplays
 - Digital Micromirrors
- Manufacturing/Integration Challenges
- Future Opportunities

Product Trends

Instrumentation

- Reduced system size.
- Increased computational power.
- Increased operational speed.
- Improved levels of process control.
- Improved reliability of manufacturing systems.
- Reduced system cost.

Integrated Circuits

- Reduced system size.
- Increased computational power.
- Increased operational speed.
- Reduced transducer size.
- Novel solid-state transducers/actuators.
- Reduced system cost.

Largely Enabled by Integrated Circuits!

Agilent Technologies

Semiconductor Manufacturing

Current Manufacturing Tolerances

- Wafer flatness: < 100nm across a 300 mm wafer.
- Metal impurity concentration: < 1 x 10¹⁰ cm⁻³.
- Stacking fault density: < 1/cm².
- Layer-to-layer alignment tolerance: < 25 nm.
- Linewidth control: 3 nm 3σ.
- Minimum feature half-pitch: 100 nm.
- Film thickness control: < 4% 3 σ over 300 mm.
- Current typical high-volume CMOS device specs.
 - Transistor Density: ~9 x 10⁷ transistors/cm².
 - Operating Frequency: ~1.7 GHz.
 - Manufacturing Cost: ~ \$32/cm².
 - \$3.6x10⁻⁷/FET

Value of a Semiconductor Mfg. Platform

	Semiconductor Mfg	Machining Mfg	Mach./Semi.
Minimum Feature Size	0.25 µm	100 µm	400:1
Alignment Tolerance	< 25 nm	~ 10 µm	40,000:1
Manufacturing Cost	\$1 x 10 ⁻⁶ /FET	~\$2 x 10 ⁻¹ /switch	200,000:1

For the number of devices made, a <u>semiconductor fab</u> is the most precise and <u>least expensive</u> manufacturing environment.

dreams made real

Definition of Monolithic Instruments

- <u>Monolithic instruments</u> are miniaturized systems, combining conventional <u>integrated circuits</u> with novel solid-state components, <u>that interact with their physical environment</u>.
- Concept- Incorporate several instrumentation system functions onto a single die.
 - Transducer/actuator
 - Driver (analog function)
 - Analog/Digital interface
 - Signal processing
 - Data analysis
 - •I/0

Classes of Monolithic Instruments

- Pre-integrated circuit.
- During integrated circuit fabrication.
- Post-integrated circuit fabrication.

Adapted from: H. Balthes, and O. Brand, Proceedings of 14th Eurosensors XIV, p1 (2000).

Agilent Technologies

Monolithic Instrument Examples

Some types of monolithic instruments that have been fabricated include:

- a-Si:H photodiode arrays.
- Organic LED micro-arrays.
- Digital Micromirror Devices.
- Liquid-crystal microdisplays.
- Bio-assay array systems.
- Inter-cellular communications.

Components proposed for future monolithic instruments include:

- Thin-film bulk acoustic resonators.
- Photonic crystals.
- Planar light-guide systems
- Group IV-based LEDs.
- SQUID magnetometers

Fabricated Monolithic Instruments

- Inkjet heads (Hewlett-Packard, Loveland and Corvallis).
- Digital micromirror displays (Texas Instruments).
- DNA microarray detectors (Infineon).
- Direct neuron communicators (Infineon).
- a-Si:H photodiode arrays (Agilent).
- Organic LED microdisplays (Agilent, e-magin).

Texas Instrument's DLP © TI 2003

Neuron Communications © Infineon 2003

a-Si:H Photodiode array (Agilent Technologies)

SXGA OLED microdisplay. Agilent Technologies

Agilent Technologies

Advantages of Monolithic Instruments

Better performance.

- Improved signal integrity.
- Access to novel transducer technology.
- Smaller.
- Cheaper.

What we have come to expect from improvements in integrated circuit technology can be applied to instrumentation systems.

Monolithic Instrument Technologies

- Elevated Photodiode Arrays.
- OLED Microdisplays.
- Digital Micromirror Arrays.

a-Si:H Elevated Photodiodes

• Hydrogenated amorphous silicon is a deposited semiconductor.

• Bandgap ~1.8 eV.

Advantages

- Higher QE.
- Tunable spectral response.
- Lower thermal effects.
- Higher fill factor.
- Cheaper imager.

Disadvantage

 Subject to metastabilities that can affect performance (Staebler_Wronski Effect).

Dielectric Isolation Interconnect

- Two extra masking levels.
- Requires a dry etch with high selectivity between two conductive materials.

dreams made real.

TFT-Based Monolithic Interconnections

Fig. 4.12. Cross-sectional view of a pixel showing the a-Si:H TFT and p-i-n photodiode sensor

R. A. Street (ed.), Technology and Applications of Amorphous Silicon. Springer, p 162 (2000).

Fig. 4.19. Example of the design of a high fill factor sensor array using a continuous a-Si:H photodiode layer with a patterned n-type doped contact

Agilent Technologies

Local-via Monolithic Interconnect Structure

US Patent 6018187

Elevated a-Si:H Photodiodes- Pixel Size Reduction

c-Si 3T Pixel

a-Si:H 3T Pixel

Agilent Technologies

Integrated a-Si:H Photodiode/CMOS Stack

- 0.35 μm 4LM CMOS process.
- 5.9 μm square pixel, on a 7 μm pitch.
- Interpixel isolation created by etching of the n-layer a-Si:H.
- Planarized passivation layer.

Agilent Technologies

a-Si:H Material Properties

Page 18

Effect of p-layer thickness on quantum efficiency

Monolithic Instruments- Jeremy Theil Page 19 dreams made real.

Effect of layer doping on quantum efficiency

Dark Current Components

- Two components of dark current:
 - Junction leakage.
 - Array edge leakage.
- Guard ring prevents edge current from reaching the array.
- Sweep guard ring and area diode together.
 - Assume: Ix = 0.
 - IE = IA A_{ring} / A_{area} diode.

Agilent Technologies

Dark Current Density vs Electric Field

Structures and Junction Parameters

- n-layer thickness: 500Å. ([P] 2 x 1020 cm-3)
- i-layer thickness: 3000 to 9000Å. (5500Å default value)
- p-layer thickness: 200Å. ([B] 7 x 1019 cm-3)

Effect of Pixel Edge Length on Reverse Bias Current (3000Å I-layer)

Stacked Elevated Photodiode Concept

dreams made real.

Optical Response of Stacked Diode Elements

a-Si:H Color Sensor Image

(640x480 4.9 x 4.9 µm pixel, 1900 lux)

Agilent Technologies

OLED Microdisplays

Organic Light-Emitting Devices (OLEDs)

- Charge transport mechanism: localized state-based hopping.
- Use for large area emissive displays, fabricated using evaporation or printing.
- Just gaining acceptance.
- Has lifetime issues.
- Applications
 - Eyepiece imagers (digital cameras).
 - Eyeglass displays.
 - Computers
 - Instrumentation

Advantages over LCD microdisplays

- Smaller
- Brighter (more power efficient).
- Less expensive (fewer components required).

Thanks to Howard Abraham for driving the Ft.Collins Development

Microdisplay Systems

LCD/LED-based Microdisplays

Microdisplay Based on Light Emitting Polymers

Value Proposition: Simpler, Cheaper, Brighter

Agilent Technologies

Organic LED Materials

Small Molecules (vacuum evaporated)

HTL: metal-phthalocyanines, arylamines (CuPc, NPD) ETL, EML: metal chelates, distyrylbenzenes

Eastman Kodak, Pioneer, Idemitsu Kosan, Sanyo, FED Corp., TDK

NPD (HTL)

Alq₃ (ETL, EML)

OLEDs rely on organic materials (polymers and small molecules) that give off light when tweaked with an electrical current

Polymers (spin cast)

HTL: conducing polymers (PDOT, PANI) ETL, EML: polyphenylenevinylenes, fluorenes

CDT, Philips, Uniax, Dow Chemical, DuPont

Polyfluorene (EML)

Operating voltage ~10V

Operating voltage \sim 5V

Agilent Technologies

Organic Electroluminescence

Organic electroluminescence by charge injection

- Hole injection from high work function transparent anode (ITO) and transport through HTL
- Electron injection from low work function cathode (Ca, Mg, LiF/Al, CsF/Al) and transport through ETL
- Since $I_{\rm p}$ < E_{\rm A} electrons are blocked by HTL and holes tunnel to ETL
- Formation of excitons and light emission from ETL
- Diode-like I-V (no light on reverse bias)
- Low turn-on voltage (~ 2 V)
- Operating voltage >> turn-on voltage Charge Injection limitations Charge Transport limitations
- Efficiency 1-5% ph/el 1-22 lm/W

Agilent Technologies

OLED Diode Construction

Process Overview for APIX/LEP Microdisplay

Device Layout:

OLED Challenges

- Environmental sensitivity.
- Device lifetime.

Agilent Technologies

OLED Diode Structure

Process Overview for APIX/LEP Microdisplay

Device Layout:

APIX Active Matrix Circuit on Silicon

- Functional test, Mount chips to daughter board, Wire bond pads to board, Final test
- Encapsulate cathode with seal process steps. N2 atmosphere.
- Thermally evaporate semitransparent cathode using diesized shadow mask. N₂ atmosphere.
- Spin Electron Transport Layer (also the Emission Layer) light emitting polymer. N₂ atmosphere.
- Bake PEDOT (180°C, 1 hr).
- Spin Hole Transport Layer (PEDOT).
- Surface clean ($IPA/O_2 Plasma$).
- Final metallization optimized for anode and bonding pads. Anodes form reflective pixels. Functional test.

Process APIX on 6" or 8" silicon wafers.

Agilent Technologies

Agilent Technologies

OLED Microdisplay Driver Circuits

Pulse-width modulation pixel driver circuit.

OLED Microdisplay Operation

© MGM

© MGM

Agilent Technologies

Digital Micromirrors

- Invented at Texas Instruments in 1987 (by Larry Hornbeck).
- Build hinged mirrors from BEOL metallization over SRAM pixels.
- Operates by electrostatic attraction between mirror and pixel electrodes.

Digital Micromirror- Construction

DMD array (progressive cutaway)

© Texas Instruments

Agilent Technologies

Digital Micromirror- Schematic

DMD Pixel Electrical Schematic

© Texas Instruments

Digital Micromirror- Mechanics

Potential Energy of a Mirror as a Function of Angle and Bias (address voltage = 0)

© Texas Instruments

Digital Micromirror- Applications

- Projections Displays
- Digital Movie Projectors
- Digital Printing and Photofinishing
- 3D Non-holographic displays
- Maskless photolithography
 - DNA sequencing
- Broadband switching
- Holographic storage
- ... Anywhere LCD can be used, with higher contrast.

http://www.dlp.com/dlp_technology/images/dynamic/white_papers/152_NewApps_paper_copyright.pdf

dreams made real

Integration Challenges

Known Issues

- Material compatibility with the "nominal" process flow.
 - Adverse effects of the standard structures.
 - Adverse effects of the new structures.
- Manufacturability of new unit modules.
- Materials optimization.
 - Material performance considerations.
 - Integration compatibility considerations.

Unknown Issues

- There will be plenty of them.
- We encountered 8 major issues in one project.
 - Example: The 9 causes of adhesion failure.

Expect the unknown!

The Future

- Integrated circuit manufacturing platforms can be extended to make monolithic instruments.
- Many classes of monolithic instruments can be created.
- The attributes of monolithic instruments enable hundreds of new applications.
 - Low cost
 - Small size
- There are plenty of opportunities out there.
- Who is going to take advantage of them?

