IEEE-SSCS Denver Chapter meeting Fort Collins, CO, March 24, 2004

A BASIC PROPERTY OF MOS TRANSISTORS AND ITS CIRCUIT IMPLICATIONS

Eric A. Vittoz

eric.vittoz@ieee.org

INTRODUCTION

- Goals of transistor modeling:
 - simulation by quantitative calculation on computer
 - highlighting properties to facilitate
 - understanding circuits
 - synthesis of robust circuits
- Best models: combine both goals by hierarchical structure example: EKV model [1].
- EKV approach will be used to explicit a basic property.

З

Local "channel voltage" V
 splitting of quasi-Fermi levels due non-0 V_S and/or V_D

 $V = V_S$ at source

 $V = V_D$ at drain

n-channel: holes at equilibrium

thus V = electron quasi-Fermi level + constant.

BASIC PROPERTY (1)

4

• For a long and wide channel:

$$I_D = \mu W(-Q_j) \frac{dV}{dx} = \frac{F(V, V_G)dV}{G(x, V_G)dx}$$

Condition: separable in V and x

- The drain current is the superposition of independent and symmetrical effects of source and drain voltages.
- Definitions:
 - Forward current $I_F = I(V_S, V_G)$, independent of V_D
 - Reverse current $I_R = I(V_D, V_G)$, independent of V_S

then *I_D* = *I_F* - *I_R*

Saturation: forward: I_R « I_F ; reverse: I_F « I_R

DOMAIN OF VALIDITY (1)

h

Condition:

$$\mu \frac{W}{(-Q_i)} = \frac{F(V, V_G)}{G(x, V_G)}$$

- *W* is independent of *V*; thus:
 - is part of G, and may thus depend on x
- Whatever its shape, a transistor can be split into several parallel transistors *i* of variable W_i and differents L_i.
 - as long as each element *i* fulfils

 $I_{Di} = \mathsf{I}_i(\mathsf{V}_{\mathsf{S}}, \mathsf{V}_{G}) - \mathsf{I}_i(\mathsf{V}_{\mathsf{D}}, \mathsf{V}_{G})$

then the sum I_D of I_{Di} fulfils it as well.

The property independent of shape.

EFFECT OF NARROW CHANNEL

- Increased importance of side effects.
- Equivalent to parallel connection of several transistors with different characteristics.
 - if each transistor *i* fulfils

 $I_{Di} = I_i(\mathbf{V}_{\mathbf{S}}, V_G) - I_i(\mathbf{V}_{\mathbf{D}}, V_G)$

• then the sum I_D of I_{Di} fulfils it as well.

The property is not degraded.

DOMAIN OF VALIDITY (2)

Condition:

$$\mu W(\textbf{-}Q_{j}) = \frac{F(V, V_{G})}{G(x, V_{G})}$$

with:
$$-Q_i = C_{OX}(V_G - V_{FB} - \Psi_S) - \sqrt{2qN_b} \varepsilon_{Si} \Psi_S$$

total charge depletion charge Q_b

- Mobile charge Q_i depends on surface potential Ψ_s , and $\Psi_{s} = f(V)$, thus Q_{i} should not be a (direct) function of x to be part of F. Therefore:
 - V_G-V_{FB} | must be independent of position x along the channel : homogeneous channel.
 C_{ox} but may depend on Ψ_s or V.
 N_b (e a : C (Ψ): polydopletion)

(e.g.: $C_{OX}(\Psi_{S})$: polydepletion)

DOMAIN OF VALIDITY (3)

9

$$\frac{\mu}{\mu}W(-Q_j) = \frac{F(V, V_G)}{G(x, V_G)}$$

• Mobility μ depends on vertical field thus on $V_G - \Psi_s$, but not on x (for homogeneous channel) thus

included in F, property not degraded at large V_G.

- But μ must be independent of drain current I_D
 otherwise could not be included in F or G
 Large L to limit longitudinal field.
- Furthermore, the effective value of $\frac{L}{D}$ along which $G(x, V_G)$ is integrated must be independent of I_D , V_S and V_D .

DOMAIN OF VALIDITY (SUMMARY)

The basic property is available

- For long and homogeneous channel
- Independently of channel shape
- Even if the channel is very narrow
- Even for large gate voltages reducing the mobility.

1()

CAUSES OF DEGRADATION (1)

Non homogeneous channel: Q_i direct function of x.

$$Q_i = -\frac{C_{ox}}{V_G} (V_G - \frac{V_{FB}}{V_{FB}} - \Psi_s) + \sqrt{2q N_b \varepsilon_{si} \Psi_s}$$

There may be variations with position x in the channel of:

- substrate doping N_b, which can be
 - intentional (e.g.: LDD)
 - artifact of process (gradient or piling-up) (always present at very ends of channel)
- flat-band voltage V_{FB}, caused by
 - variation of N_b
 - variation of charge in oxide

• effective C_{ox} , always present at very ends of channel.

SPECIAL CASE OF WEAK INVERSION

- Weak inversion characterized by $Q_i \ll Q_b$, therefore:
 - Q_i has negligible effect on potential and field
- Can be expressed as $-Q_i = G_q(\Psi_s)e^{-V/U_T}$
 - with Ψ_s independent of V, thus:
 - G_q can be any function of x and is included in G, therefore:
- The property is valid even if the channel is not homogeneous.

Mobility μ independent of V, thus part of G,
 F is reduced to F = e^{-V/U}τ : independent of V_G.

CAUSES OF DEGRADATION (2)

- Channel long \Rightarrow non-long \Rightarrow short
 - property progressively degraded by...
 - several independent mechanisms:
 - a. Voltage effects:
 - channel length modulation
 - IF or IR becomes function of both VD and VS
 - effect proportional to 1/L
 - barrier lowering and 2-D effects: further degradation.
 - **b.** Current effects:
 - if *I_D* is increased by reducing *L*, then
 ⇒ carrier velocity increases towards saturation
 ⇒ mobility reduced, thus function of *I_D*
 - c. Non-homogeneous channel (except in weak inversion):
 importance of end-effects proportional to 1/L.

EXPLICIT I(V, V_G) IN FIRST ORDER EKV MODEL (1)

15-

CIRCUIT EXAMPLE: LOW-VOLTAGE CASCODE

- Goal: V_{D5} min. for saturation
- Means: control $\frac{I_{R5}}{I_{F5}} \ll 1$:
 - *m* and *n* » 1, hence:
 - $I_{D5} \cong I_{D1}$ with $V_{D5} = V_{D1}$
 - thus $I_{R5}/I_{F5} \cong I_{R1}/I_{F1}$

cascode pair

•
$$I_{F2} = I_b / n = m I_{R1}$$

• $I_{F1} \cong I_b$

$$\Rightarrow \frac{I_{F1}}{I_{R1}} \cong mn \cong \frac{I_{F5}}{I_{R5}}$$

- Large enough to ensure saturation
- Independent of Ib.

CONCEPT OF PSEUDO-RESISTOR [3,4]• We have shown that: $I_D = \frac{1}{L} \begin{bmatrix} \int_{0}^{\infty} FdV - \int_{0}^{\infty} FdV \\ \int_{0}^{\infty} Gdx \begin{bmatrix} V_{S} & V_{D} \end{bmatrix}$ ∞ • Definitions: • pseudo-voltage: $V^* = -K_0 \int F(V, \frac{V_G}{V_G}) dV$ • pseudo-resistor: $R^* = K_0 \int G(x, V_G) dx$ (where K_0 : any positive constant)

• Results in pseudo Ohm's Law: $I_D = (V_D^* - V_S^*)/R^*$

LINEAR CURRENT-MODE CIRCUITS [3,4,5,6]

В

- Implications of pseudo Ohm's law $I_D = (V_D^* V_S^*)/R^*$
 - Any network interconnecting transistors with same $F(V, V_G)$ and same V_G is linear with respect to currents.
 - Any circuit of linear resistors can be implemented by transistors only, provided only currents are considered.
 - A resistor connected to ground (V=0) in the resistive prototype corresponds to a saturated transistor that provides a pseudo-ground (V*=0).
- In weak inversion:
 - F indep. of V_G , but V_G included in function G, hence:
 - Different V_G possible for each transistor
 - Each R^* can be separately adjusted by its V_G .

identical transistors, all in same substrate

- much more precise than different L for input and output
- less precise than parallel trans. only (limits of property).

• Output I_3 is the weighted sum of I_1 , I_a and $-I_b$.

I_a and I_b are low-voltage inputs (T₂, T₄ not saturated)

FURTHER APPLICATIONS OF PSEUDO-RESISTORS

- Linear attenuators [5] (electrical control in weak inversion)
- Spatial information processing:
 - nth oder moment computation [11,12,13]
 - diffusion networks (isotropic or not) [14,15]
 - 2-D emulation of physical media [16]
 - path finding [17].
- In weak inversion: exploitation of current distribution in voltage- (or current-) dependent linear networks:
 - local normalisation in vision processing [18]
 - generation of nonlinear functions [19]
 - fuzzy logic processor [20]

CONCLUSION

- Basic MOS property for long and homogeneous channels: $I_D = I(V_S, V_G) - I(V_D, V_G) = I_F - I_R$
 - superposition of independent and symmetrical effects of S and D voltages.
 - forward and reverse components.
- Underlies first-order EKV transistor model.
- Property progressively degraded when channel shortened.
- Underlies the concept of pseudoresistor:
 - linear current mode circuits
 - transistor implementation of arrays of resistors.
 - simpler analysis of transistor circuits.

References

7h

- General: E. Vittoz et al., "A Basic property of MOS transistors and its circuit implications", Proc. of Workshop on Compact Modeling, WCM-MCM 2003, Febr. 23-27, San Francisco.
- [1] C.Enz, F.Krummenacher and E.Vittoz, "An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications", Analog Integrated Circuits and Signal Processing, Vol.8, pp.83-114, 1995.
- [2] B. Minch, Proc. ISCAS'02, 3, 619-622, 2002.
- [3] E.Vittoz and X.Arreguit, "Linear networks based on transistors", Electron. Lett., vol. 29, pp.297-299, 1993.
- [4] E.Vittoz, ÒPseudo-resistive networks and their applications to analog collective computationÓ, Proc. MicroNeuroÕ97, Dresdepp.163-173.
- [5] K.Bult and G.Geelen, "A inherently linear and compact MOST-only current division technique", Dig. ISSCC Tech. Papers, February 1992, pp.198-199. Also in IEEE J. Solid-State Circuits, vol.27, pp.1730-1735, December 1992.
- [6] K.W.Boahen and A.G.Andreou, "A contrast sensitive silicon retina with reciprocal synapses", *Advances in Neural Information Processing Systems*, Vol.4, pp.764-772, Morgan Kaufmann Publishers, San Mateo, 1992.
- [7] C.Enz and E.Vittoz, "CMOS low-power analog circuit design", in *Emerging Technologies*, edit. R.Cavin and W.Liu, The Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1996, pp. pp.79-133.
- [8] C.Hammerschmied *et al.*, Design and implementation of an untrimmed MOSFET-only 10-bit A/D converter with -79dB THD", IEEE J. Solid-State Circuits, vol. 33, pp. 1148-1157, Aug. 1998.
- [9] F. Krummenacher and N. Joehl, "A 4-MHz CMOS continuous-time filter with on-chip automatic tuning", IEEE J. Solid-State Circuits, vol. 23, pp. 750-758, June 1988.
- [10] T.DelbrŸck,"Bump circuits for computing similarity and dissimilarity of analog voltages", Proc. of International Joint Conference on Neural Networks, vol.1, pp.I-475-479, 1991.
- [11] M.Tartagni and P.Perona, "Computing centroids in current-mode technique", Electron. Lett., vol.29, pp.1811-1813, 1993.
- [12] D.L.Standley, "An object position and orientation IC with embedded imager", IEEE J. Solid-State Circuits, vol.26, pp.1853-1859, December 1991.
- [13] P.Venier et al., "Analog CMOS photosensitive array for solar illumination monitoring", ISSCCÕ96 Dig. Tech. Paper, pp.96-97, San Francisco, 1996
- [14] E.Vittoz et al.,"Analog VLSI implementation of a Kohonen map", Dig. of the JournŽes dÕElectronique 1989 on Artificial Neural Networks, EPF-Lasanne, pp.291-301.
- [15] P.Venier *et al.*, "An integrated cortical layer for orientation enhancement", IEEE J. Solid-State Circuits, vol. 32, pp.177-186, Febr. 1997.
- [16] L.Watts et al.,"A bidirectional analog VLSI cochlear model", in Advanced Research in VLSI, Proc. of the 1991 Santa Cruz Conference, M.I.T.Press, Cambridge, MA, pp.153-163.
- [17] L.Tarassenko *et al.*, "Real-time autonomous robot navigation using VLSI neural networks", in *Advances in Neural Information Processing Systems*, vol.3, R.P.Lippmann, J.E.Moody and D.S.Touretzky (editors), pp.422-428, Morgan Kaufmann, 1991.
- [18] P.Venier, "A contrast sensitive silicon retina based on conductance modulation in a diffusion network", MicroNeuroÕ97, Dreden.
- [19] O.Landolt, "Place coding in analog VLSI and its application to the control of a light deflection system", MicroNeuroÕ97, Desden.
- [20] O.Landolt, "Low-power analog fuzzy rule implementation based on a linear transistor network", Proc. MicroNeuroÕ96, pp. 86-9, Lausanne, 1996.