An Introduction: Or What is this talk really about?

Two pictures...

Measurement, Modeling and Simulation Techniques for High Speed Systems (Transmission Line Systems)

Assumptions

• High speed = Td/C > Tr

- Tr = rise-time,
- C = velocity of propagation in the system and
- Td is the propagation time from one end to the other
- Low loss in package and bond
- ~ 0-6dB loss in transmission system at Fs/2
- The goal is to understand the systems

Assumptions

- Build up all models from pieces
 - They are more portable
 - The user/builder can understand them
 - Easier to tease out interactions
- Switch to the Hspice W element, or equivalent, after everything is well understood –not covered in this talk-

Case studies

- Non-ideal terminated receiver
- Package and bond wires
- Plating stubs

RX test circuit

Cable model

Transmission line model

Cable loss model

Cable loss characteristic

Connector model

Board model

Package and bond model

Directional coupler model

Return loss at connector

At the cable end

After the connector

After 5cm of board

On the chip at the terminator

System frequency response

TDR sim test bench

TDR sim result

Package and bond wires

- Single lumped models:
 - Watch out above 100-200MHz
 - Break into more lumps based on extracted data
 - Can extract a small group of pins by hand
 - Use a solver

Lumped model test bench

2 lumps and 8 lumps

Lumped results

Lumped models

Cross-talk

- Interconnected transmission lines generally do the trick.
- Hspice W element is really good but try getting one quickly.

Obligatory cross-talk slide

X-talk zoom

Plating stubs

- EPBGA Package Shown
- Bond-site is to the left, Package connection is the dot and the "back-stub" extends to the right
- The long ones are about 3-4 mm long
- Back-stubs required in manufacture of PBGA and EPBGA packages

Plating stub models

Top level test bench

Plating stub models

Plating stubs

- At 5GHz >1mm stubs can cause signal integrity problems
- Only trace that meets the XFI Return Loss spec. is the lowest one

Comments

- RLGC models o.k. for narrow BW
- Better models are needed for > 1:5 frequency range typical of serial PHYs
- The Hspice W element is very complete and will work with multi-octave bandwidths
- Simpler models are also useful

Where to start?

- Estimate physical parameters from geometry, easier than L,C directly
- Set impedances to match TDR/network analyser data
- Try SQRT(L/C) from lumped after correcting for K factor
- Use a good EM solver

Parting shots...

If you see a system signal specification that is not measured at the termination point of a transmission line into a matched load you should:

- A. Run
- B. Tell them "We'll get back to you on that."
- C. Offer to sell the authors the Brooklyn Bridge
- D . All of the above