Analog Adventures in Digital Chip Testing

Jeff Rearick

Purpose

- Provide background:
 - Quick introduction to digital test
- Describe the problem:
 - Testing "digital" circuits that have analog issues
- Describe a solution:
 - Selective application of analog test & measurement techniques

- Digital Test 101
- Problems with Testing Today's "Digital" Chip
- Some Solutions for Analog Test Issues
- Conclusions

Digital Test 101

- Problems with Testing Today's "Digital" Chip
- Some Solutions for Analog Test Issues
- Conclusions

Digital Test 101: Common Test Questions

- Why test?
- What do we test?
- How are tests applied to a chip?
- What kinds of tests are there? How created?
- How good is a test?
- What upcoming test issues do we expect?

Manufacturing Isn't Always Perfect

Missing Contacts

Open Metal Line

Why do we test ICs?

- Simply, because Yield is not 100%
- Shipping defective chips to a customer: bad idea
- $DL = 1 Y^{(1 DC)}$
 - DL is Defect Level (0 is good)
 - Y is Yield (1 is good)
 - DC is Defect Coverage (1 is good)
- Until IC Manufacturing becomes perfect, we'll test

What Do We Test?

- What are the options?
 - Functionality
 - If chip operates correctly, it must be good
 - Structural correctness
 - If chip has no defects, it must be good
- Functional test vs. Structural test debate
- Defect-Based Test (DBT)
 - Another angle on the debate: different == bad
- Best approach: all 3, heavily biased toward structural + DBT

Structural Test: Automated Test Pattern Generation

- Circuit netlist : gate level model
- Fault model : abstracted defect behavior
 - **Stuck-at** : line in circuit acts permanently stuck
 - Delay : gate(s) in circuit operate too slowly
 - Transition (== Gate Delay) : lumped delay
 - Path Delay : distributed delay
 - Iddq : high static current (pseudo-stuck-at)
- I/O parametric specs (freq, timing, levels, ...)
- Signal constraints

 Test patterns

- Fault
 coverage
- Undetected faults

What Do We Test Structurally?

- Defect-free presence of every gate
 - Logical operation
 - Connections to predecessors, successors
 - Capability of transitioning at speed
- Chip specifications
 - I/O parameters (e.g. Vol, Voh, Iol, Ioh, Vil, Vih, Ilkg, Iz, Tck_q, Tsu, Th)
- Functional operation of BISTed circuits
 - RAMs, Latch Arrays, TCAMs, etc.
 - SerDes high speed I/O channels

How Are Tests Applied to a Chip?

- Traditional Tester Hardware
 - Power supplies, tester channels
 - Parametric Measurement Units
 - Stored stimulus and response data
- On-chip Design-For-Test (DFT) hardware
 - Scan flops stitched into scan chains
 - Test control signals via TAP
 - Built-In Self Test (BIST) structures
- Almost all DFT these days is built around scan

What is Scan DFT?

- Connect all flip-flops into a serial scan chain
 - Extra scan-in input for each flop
 - Q of one flop becomes scan-in of the next
 - Distribute all flops across several scan chains
- Reduce sequential test problem to combinational
- Serial shifting access is slow, but effective

Scan DFT : Original Circuit

Scan DFT : Scan Circuit (mux-d)

FAST-lean Flip-Flop Views

FAST-lean Flip-Flop Schematic

What Kinds of Tests are There?

- Functional : some coverage of stuck-at and delay
- Scan
 - Boundary : for chip-to-chip tests on boards

Continuity : scan chains can shift serially

- Static stuck-at and Iddq faults
- Dynamic (delay) faults (transition, path delay)
- BIST : for RAMs, SerDes, I/Os, Logic
- Pad parametrics : analog measurements

Scan Continuity

Serial scan shifting to verify continuity

flip-flops

Stuck-at Fault Testing

Combinational logic tested

Iddq Testing

Combinational logic tested via monitoring current through VDD

Delay Fault Testing: System Clock Launch

Transitions on functionally sensitizable paths are tested

How Good is a Test (metrics)?

- Fault Coverage = faults detected / total faults
- Untestable faults
 - Structurally untestable
 - Tied, Blocked, Unused, Redundant
 - Structurally at-best-potentially testable
 - Clocks, resets, tristate bus enables, wired
 - Constrained: test signals
- Testable Fault Coverage = detected / (total untestable)
- Coverage is a predictor of escape rate (the real metric)

Which Tests Work Best?

Test Effectiveness Study (Maxwell, ITC '00)

What are the Trends in Testing?

- Widespread usage of DFT: scan and BIST
- Widespread usage of ATPG (Automated Test Pattern Generation)
- Less usage of functional testing
- Drive to reduce the cost of test
- Cheaper testers

Risky! Test is getting more complex!

What are Upcoming Test Challenges?

- Solidifying AC Scan tests (better fault models)
- Quantifying new defect spectra (AI bridges -> Cu voids)
- Mitigating growth of subthreshold conduction Iddq leakage
- Addressing dominance of interconnect faults over device faults
- Managing scan test length and time for multimillion transistor chips
- Testing high speed signal integrity
- Testing for layout-induced marginalities

- Digital Test 101
- Problems with Testing Today's "Digital" Chip
- Some Solutions for Analog Test Issues
- Conclusions

- Digital Test 101
- Problems with Testing Today's "Digital" Chip
 - I/O parametric testing
 - Delay testing
 - Iddq testing
 - LVS/DVS/EVS Defect-Based Testing
 - High speed I/O
- Some Solutions for Analog Test Issues
- Conclusions

- Digital Test 101
- Problems with Testing Today's "Digital" Chip
 - I/O parametric testing
 - Delay testing
 - Iddq testing
 - LVS/DVS/EVS Defect-Based Testing
 - High speed I/O
- Some Solutions for Analog Test Issues
- Conclusions

I/O Parametric Test (the traditional analog test)

- Many parameters
 - Vol, Voh, Iol, Ioh, Vil, Vih, Ilkg, Iz, Tck_q, Tsu, Th
- Many interfaces (CMOS, SSTL, HSTL, LVDS, many serial specs)
- Challenging specs (10Gb/s, 200mV swing, multilevel logic)
- Many pins (1000 2000 signal pins not uncommon)
- Few tester channels (2048 pin testers can cost almost \$10M)
- Programmable values (impedance, slew rate, termination, etc.)

Driver Impedance Range Deli ASIC Measurements

Measurement Data

<pre>vector label deli_io_imp_00 resistance = 78.2882 Ohm</pre>	ເຮ
<pre>vector label deli_io_imp_01 resistance = 73.4972 Ohm</pre>	ເຮ
<pre>vector label deli_io_imp_02 resistance = 69.2707 Ohm</pre>	ເຮ
<pre>vector label deli_io_imp_03 resistance = 65.0682 Ohm</pre>	ເຮ
<pre>vector label deli_io_imp_04 resistance = 61.3653 Ohm</pre>	ເຮ
<pre>vector label deli_io_imp_05 resistance = 57.677 Ohm.</pre>	S
<pre>vector label deli_io_imp_06 resistance = 54.4292 Ohm</pre>	ເຮ
<pre>vector label deli_io_imp_07 resistance = 51.2053 Ohm</pre>	ເຮ
<pre>vector label deli_io_imp_08 resistance = 48.342 Ohm</pre>	S
<pre>vector label deli_io_imp_09 resistance = 45.5273 Ohm</pre>	ເຮ
<pre>vector label deli_io_imp_10 resistance = 43.0223 Ohm</pre>	ເຮ
<pre>vector label deli_io_imp_11 resistance = 40.5314 Ohm</pre>	ເຮ
<pre>vector label deli_io_imp_12 resistance = 38.3388 Ohm</pre>	ເຮ
<pre>vector label deli_io_imp_13 resistance = 36.1582 Ohm</pre>	າຮ
<pre>vector label deli_io_imp_14 resistance = 34.2239 Ohm</pre>	ເຮ

- Digital Test 101
- Problems with Testing Today's "Digital" Chip
 - I/O parametric testing
 - Delay testing
 - Iddq testing
 - LVS/DVS/EVS Defect-Based Testing
 - High speed I/O
- Some Solutions for Analog Test Issues
- Conclusions

Path Length Example

Defect Tolerance as a Function of Path Length

(a)

(Digital) Path through fault site should be long

(Analog) Clock period is the metric used to test the path

Dynamic Scan Test : Reality

Power supply droop causes clock period stretch

Clock Double Pulse and Vdd

Free-running Clock and Vdd

Delay Testing is Analog

- 312.5 270 = 42.5 (~15%)
- Typical frequency margin is 5-10%
- Clock period measurement and adjustment crucial

• Other internal analog issues on the horizon: crosstalk

Crosstalk Test : Simulation

Tester Results

- Overlay shmoo:
 - 1/f vs. Vdd
- 6 tests
 - 2 aggressors
 - ...
 - 7 aggressors
- -> No differences

i.e. #aggressors had no effect

Outline

- Digital Test 101
- Problems with Testing Today's "Digital" Chip
 - I/O parametric testing
 - Delay testing
 - Iddq testing
 - LVS/DVS/EVS Defect-Based Testing
 - High speed I/O
- Some Solutions for Analog Test Issues
- Conclusions

Iddq Testing with Current Ratios

- CMOS has low leakage (quiescent current) in static state
- Defects cause static current to be drawn
- Measurement of Idd during static state allows defect detection

Does Iddq Have a Future?

- Issue: signal-to-noise ratio
 - Signal = current from defect
 - Noise = leakage current from everybody else
- Leakage currents rising as geometries shrink
- Intel presentation last month: leakage power was huge!
- Likely to lose Iddq as a test method

Iddq Testing with Current Ratios

- Single-threshold Iddq tests do not work for deep submicron chips
- Solution: Current Ratios method (Maxwell, ITC 1999)
- Self-scaling solution: max/min ratio + guardband : find outliers
- Extends usability of Iddq into .13u, even 90nm designs

Outline

- Digital Test 101
- Problems with Testing Today's "Digital" Chip
 - I/O parametric testing
 - Delay testing
 - Iddq testing
 - LVS/DVS/EVS Defect-Based Testing
 - High speed I/O
- Some Solutions for Analog Test Issues
- Conclusions

WLRS: Wafer Level Reliability Screening

- Latent defects detectable by clever test methods
 - LVS : Low Voltage Sweep
 - DVS : Dynamic Voltage Stress (30% over nominal voltage)
 - EVS : Enhanced Voltage Stress (80% over nominal voltage)
- Iddq is a very sensitive measure of stress-induced performance shift
- Study: WLRS with statistical defect-based test for outliers identified latent defects at wafer test (Quach, ITC 2002)

Test Types and Applications LVS Timing Diagram

Minimum passing supply voltage

DVS Timing Diagram

EVS Timing Diagram

Voltage Acceleration Factor (AF_v)

Stress Voltage in V

Low Voltage Sweep (LVS)

I_{DDQ} Outliers Before Voltage Stress

digital_is_analog.ppt

I_{DDQ} Outliers Before & After Stress

Min I_{DDQ} in mA

Defect-Based Testing is Analog

- Correlation of test results as continuous variables
 - Iddq
 - Vdd
- Measurement over large sample size using statistics
 - Outliers
 - Distributions

Outline

- Digital Test 101
- Problems with Testing Today's "Digital" Chip
 - I/O parametric testing
 - Delay testing
 - Iddq testing
 - LVS/DVS/EVS Defect-Based Testing
 - High speed I/O
- Some Solutions for Analog Test Issues
- Conclusions

... if only data were really this digital...

Goffline] Agilent Logic Analyzer - [\Config Files\chains.xml] - [Waveform-1]	_ 8 ×
Help Edit View Setup Tools Markers Run/Stop Waveform Window Help	_ 8 ×
$\boxed{M1 \text{ to } M2} = 25 \text{ ns}$	
Scale 20 ns/div 🖩 ±1± ±1± Delay -5 us 🖩 🖊 11± 🟲 ±1. 🕨	
	<u></u>
	88 us -4.81
	01 0 🔶
	101010
	1 0
SCAN3 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0	
	0 10 1
SCAN5 0 1 01 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1010
	<u> </u>
Image: Control of the second secon	
For Help, press F1 Status	Offline
🏽 🛐 Start 🔢 🙆 🈂 🔄 🔄 🔩 C:\WINNT\system32\teln 🔯 Inbox - Microsoft Outlook 🛛 💥 [Offline] Agilent Logic 🦉 🕉 🚱 🗖 🖉 🖉 🖉 🖉 🚱 🚱	🗐 🦉 9:48 PM

Limitations in High-Speed I/O Test Observability

"Eye" at Receiver Pins at 6.25 Gb/S, 34" Trace

Data Bit View: Negative Eye Opening

Bit Error Rate Testing

- Bit Error Rate is the bottom-line measure of communication quality
 - BER = #errors / #bits transmitted
 - 10⁻¹² BER => ~1 minute for 1 error at 10 Gb/s
 - 10^{-15} BER => ~1 day for 1 error at 10 Gb/s
 - 10⁻¹⁷ BER => ~Fiscal Quarter for 1 error at 10 Gb/s
 - > 400 errors required for 95% confidence
 - T = 3/r seconds with 0 errors for 95% confidence that error rate < r
 - Stress the channel (ie. reduce SNR) to cause more errors; extrapolate

Problem: if BER too high, what was the cause?

Outline

- Digital Test 101
- Problems with Testing Today's "Digital" Chip
- Some Solutions for Analog Test Issues
- Conclusions

Eye Mapping (to produce eye diagrams)

Move through the (Phase,Offset) space to map eye opening

Boundary Scan in GHz Channel

IEEE 1149.6 : AC Extest $\int_{Vref} \int_{Vref} \int_$

- IEEE 1149.1 extensions for advanced I/O
 - AC-coupled nets
 - Differential nets
 - Adjustable I/O
- Agilent provided technical leadership in working group
- First silicon implementation of 1149.6

AC Scan Shmoo: Clock Stretch Compensation

Process Skew Methodology Force the Process Drift prior to Characterization

Fast and Slow Targets (Outer Box) Represent PCM Specification Limits for a Given IC Process Technology

Skew Lot vs Process Distribution

On-Chip Instrumentation Accessing Analog Information Inside

Outline

- Digital Test 101
- Problems with Testing Today's "Digital" Chip
- Some Solutions for Analog Test Issues
- Conclusions

Digital == Analog

- The strictly digital test problem is well understood
 - Temptation is to simplify the digital test manufacturing flow
- Real digital test issues are often analog in nature
 - Test equipment must keep pace (speed, power, data volume)
 - Some test equipment must find its way on chip
- Characterization of analog nature of process drift is important
- Clever design-for-testability and manufacturability is essential!

