

Biologically Inspired CMOS Vision Sensors

Jan Van der Spiegel jan@seas.upenn.edu

University of Pennsylvania Department of Electrical and Systems Engineering Philadelphia, PA 19104

SSCS Fort Collins Chapter, Colorado (Denver Section) July 27, 2005

Overview

- Why biologically inspired sensors?
- Biological visual system
 - Computational strategies, Neural circuits
- Neuromorphic Vision Sensors:
 - Sensor for the detection of image features (spatial)
 - Tracking sensor (spatio-temporal)
- Conclusions

A picture is worth a thousand words

Biological Vision System

Retina Receptive Fields Visual Cortex

Retina - Center surround receptive field

Processing in the Visual Cortex

Processing in the Visual Cortex

- Cortical area V1: hypercolumn structure
 - Orientation, edge, line stops, etc detectors

Orientation selectivity of a simple cell

Information flow from retina to brain

In summary: the biological system...

- Decomposes a picture in many features: edges, orientation, line stops, junctions, onset (in time) etc.
- The features are integrated at higher level into a more conceptual representation.
- Highly structured, parallel and hierarchical.
- Distributed architecture leads to:
 - Data reduction; fast processing (parallelism), robustness

Neuromorphic Vision Sensors

(Sc. American, May 2005) Confluence of electronics and biology

Example 1

Vision Sensor for the Detection of Image Features

Line orientations, line stops Edges, corners, intersections:

Detected features for printed characters

Detected features for handwritten characters

Retinal orientation sensor

Implementation considerations

Template is made <u>programmable</u> to detect a variety of features and perform a set of operation

Conceptual pixel architecture

Fort Collins - 7/27/05

Schematic of the processing circuit

Design procedure based on transistor mismatch analysis

Current variation is function of:

- design parameters (W,L,I_{ref})
- mirroring operation
- summation and subtraction operations

Speed and Accuracy as a function of the reference current

Processing Flow on the Sensor

line elongation

Prototype Test Chip

- technology: HP CMOS
 0.5µm (3 metal 1 poly)
- chip area: 3.2mm x 3.2mm
- pixel number: 16x16
- pixel area :154.5 μm x 153.3 μm
- number of transistors: 147tr/pixel
- fill factor: 12.5 %
- Each pixel is programmable: 27 types of operations (30-bit word) involving up to 270 individual steps

Results

Maximum operating frequency as a function of the reference current

Sensor responses to letter images

Example 2

Silicon Retina for 2-D Tracking

(Ref: R. Etienne, J. Van der Spiegel, P. Mueller, M. Zhang, IEEE CAS II, June 2000)

Proposed approach

Loosely modeled after the primate oculomotor system:

- Retinal photoreceptor organization
- Retinal photosensing and early processing
- Visual cortex for smooth pursuit
- Superior colliculus for saccadic generation
- Capture the *functions* found in biology and use the most efficient way to implement it using hardware (vs. wet ware)

Tracking Chip Architecture

Object to be tracked

- Keep object centered on fovea
 - **Fovea**: smooth pursuit
 - Periphery:
 - localization
 - saccadic generation
 - Interaction foveaperiphery
- Select target based on motion

(After R. Etienne, J. Van der Spiegel, Mueller, M. Zhang, ISSCC 1997 and IEEE CAS II, June 2000)

PENN Center for Sensor Technologies

Tracking Chip

- Fovea: 9x9 cells
- Periphery: 19x17
- 2µm CMOS
- 6.4x6.8 mm²

Retina with edge detection

Motion detection in the fovea: smooth pursuit

- Correlation based
- X-motion (conceptual):

Performed outside array

Measurement of the Foveal Motion detection

Periphery: Target Acquisition

- Lower resolution
- Edge-detection
- ON-set detection (temporal differentation but No motion detection)
- Localization of centroid in relatation to the spatio-temporal boundaries
- Row & column labeling: X and Y

Tracking Experiments

Fort Collins – 7/27/05

PENN Center for Sensor Technologies

Conclusions

Summary

Biological systems provide a viable paradigm for building vision sensors:

- Compact, low power, robust under different conditions
- Massively parallel pixel-level processing

• Two Vision sensors:

- <u>Higher level features</u> (X-, Y, and T-type) : Incorporates processing functions found in area V1
- <u>Target tracking</u>: space variant (foveal and periphery) for smooth pursuit and saccadic motion generation
- Implements the functions and algorithms of biology.
- Optimized for information extraction, not image rendering
- Limitations: limited resolution, large pixel size and small fill factor.

Thank you

