Negative Bias Temperature Instability (NBTI) Physics, Materials, Process, and Circuit Issues

Dieter K. Schroder Arizona State University Tempe, AZ

Introduction

- What is NBTI?
- Material Issues
- Device Issues
- Circuit Issues
- Effect of
 - Hydrogen
 - Nitrogen
 - Water
 - Fluorine
 - Deuterium
 - Boron
 - Stress

NBTI Minimization

What Is NBTI?

- Negative bias temperature instability occurs mainly in p-channel MOS devices
- Either negative gate voltages or elevated temperatures can produce NBTI, but a stronger and faster effect is produced by their combined action
 - Oxide electric fields typically below 6 MV/cm
 - Stress temperatures: 100 250°C
 - Drain current, transconductance, and "off" current decrease
 - Absolute threshold voltage increase
- Such fields and temperatures are typically encountered during *burn in*, but are also approached in high-performance ICs during routine operation

Parametric Impact

- Material
 - Interface traps, *D_{it}*
 - Oxide charges, N_{ot}

Device

- Threshold voltage, V_{T}
- Transconductance, g_m
- Subthreshold slope, S
- Mobility, μ_{eff}
- Drain current, I_{D,lin}, I_{D,sat}
- Circuit
 - Gate-to-drain capacitance, C_{gd}
 - Delay time, t_d

Device Lifetime Limits

NBTI – key reliability issue

N. Kimizuka et al., IEEE VLSI Symp. 73 (1999)

MOSFET Performance

MOSFET drain current depends on

- Dimensions: *W*, *L*, $C_{ox} \sim 1/t_{ox}$
- Mobility: μ_{eff}
- Voltages: V_G , V_D , V_T

$$I_D = (W / 2L) \mu_{eff} C_{ox} (V_G - V_T)^2$$

Delay time: t_d

$$\boldsymbol{t}_{d} = \frac{\boldsymbol{C}\boldsymbol{V}_{DD}}{\boldsymbol{I}_{D}} = \frac{\boldsymbol{C}}{(\boldsymbol{W}/2\boldsymbol{L})\boldsymbol{\mu}_{eff}}\boldsymbol{C}_{ox}\boldsymbol{V}_{DD}(1-\boldsymbol{V}_{T})\boldsymbol{V}_{DD})^{2}}$$

 $I_D \Downarrow$ and $t_d \Uparrow$ if $V_T \Uparrow$ and $\mu_{eff} \Downarrow$

When device parameter change exceeds a certain value \Rightarrow *failure*

Earliest NBTI

Generation of fixed charge and interface states with *negative* gate bias was observed very early during MOS development – *in 1967*!

B.E. Deal et al., J. Electrochem. Soc. 114, 266 (1967)

Typical NBTI Features

Interface traps, D_{it}, and positive oxide charges, N_{ot}, are generated at similar rates

 $\Delta \boldsymbol{D}_{it} \approx \Delta \boldsymbol{N}_{ot}$

V_T, Transconductance

- Charge pumping current I_{cp} ~ interface state density D_{it}
- **Transconductance** $g_m \sim$ effective mobility $\mu_{eff} \sim D_{it}$

Threshold Voltage

Threshold voltage of *p*-channel MOSFETs decreases with stress time. Why?

C. Schlünder et al. Microelectron. Rel. 39, 821 (1999)

SiO₂ and SiO₂/Si Interface

Si, Si/SiO₂ interface, SiO₂ bulk, and oxide defect structure

Interface Traps

- Si has 4 electrons
- At the surface, Si atoms are missing: D_{it} ~ 10¹⁴ cm⁻²eV⁻¹
- After oxidation: $D_{it} \sim 10^{12} \text{ cm}^{-2} \text{eV}^{-1}$
- After forming gas (H₂/N₂) anneal: D_{it} ~ 10¹⁰ cm⁻²eV⁻¹
- D_{it} are energy levels in the band gap at the Si surface

Hydrogen is very important?

NBTI Mechanism

- A hole (*h*) is attracted to the Si/SiO₂ interface
- It weakens the Si-H bond until it breaks
- The hydrogen (H) diffuses into the oxide or Si substrate
 - If H diffuses into the Si, it can passivate boron ions
- Leaves an interface trap (D_{it})

Holes Are The Problem !

Via Electromigration

12.00

P. Nguyen, ASU

G. Dixit, IRPS 2004

L. Wagner, IRPS 2004

L. Wagner, IRPS 2004

K. Tu, UCLA

Interface Trap Charge

- Band diagrams of the Si substrate of a *p*-channel MOS device shows the occupancy of interface traps and the various charge polarities for an *n*-substrate
- Acceptor with electron: negative charge
- Donor without electron: positive charge
 - (a) negative interface trap charge at flat band
 - (b) positive interface trap charge at inversion

(Heavy line: interface trap occupied by an electron; light line: unoccupied by an electron)

Threshold Voltage

• N_{it} and $N_f \approx 10^{10}$ cm^{-2;} 0.1 µm x 1.0 µm gate ($A = 10^{-9}$ cm²), there only 10 interface traps and 10 fixed oxide charges at the SiO₂/Si interface under the gate $\Rightarrow \Delta V_T$

$$\Delta V_{\tau} = -\frac{Q_{it} + Q_{f}}{C_{ox}} = -\frac{20q}{K_{ox}\varepsilon_{o}A}t_{ox} = -\frac{1.6 x 10^{-19} x 20}{3.45 x 10^{-13} x 10^{-9}}t_{ox} = -9.2 x 10^{3} t_{ox}$$

- For $t_{ox} = 5 \text{ nm} \Rightarrow \Delta V_T \approx -5 \text{ mV}$. For $\Delta V_T = -50 \text{ mV}$, device failure $\Rightarrow \Delta N_{it} = \Delta N_f = 10^{11} \text{ cm}^{-2}$
- Suppose that in a matched analog circuit, one MOSFET experiences $\Delta V_{\tau} \approx -10$ mV and the other $\Delta V_{\tau} \approx -25$ mV. This 15 mV mismatch in a $V_{\tau} = -0.3$ V technology $\Rightarrow 5\%$ mismatch. High performance analog transistor pairs that require mismatch tolerances of 0.1% to 0.01%.

Reaction – Diffusion Model

- Holes interact with Si-H bond
- Holes weaken Si-H bond
- At elevated temperature, the Si-H bonds dissociate

$$Si_3 \equiv SiH + h^+ \rightarrow Si_3 \equiv Si \bullet + H^+$$

- Initially
 - *D*_{it} generation ~ Si-H dissociation rate (reaction limited)
- Later
 - D_{it} generation ~ hydrogen diffusion rate (diffusion limited)

M.A. Alam, IEDM, 2003; IRPS 2005

Reaction – Diffusion Model

$$\frac{dN_{it}}{dt} = k_f(N_{Si-H} - N_{it}) - k_r N_{it} N_H(x=0)$$

Hydrogen Model

- Hydrogen from Si substrate drifts to SiO₂/Si interface
- H° near/at SiO₂/Si interface traps a hole \Rightarrow H^{+}
- *H*⁺ depassivates Si-H bond \Rightarrow *D*_{it} and *H*₂

$$Si_3 \equiv SiH + H^+ \Rightarrow Si_3 \equiv Si \bullet + H_2$$

Some H^+ drifts into SiO₂ \Rightarrow N_{ot}

D.M. Fleetwood et al. Appl. Phys. Lett. 86, 142103 (2005)

Device Dependence

$$I_{D,lin} = \frac{W\mu_{eff}C_{ox}/L}{1+V_D/\varepsilon_{lat}L}(V_G - V_T - V_D/2)V_D$$
$$\Rightarrow \frac{\delta I_{D,lin}}{I_{D,lin}} = -\frac{\delta V_T}{V_G - V_T}$$

$$I_{D,sat} = WV_{sat}C_{ox}\frac{(V_G - V_T)^2}{V_G - V_T + \varepsilon_{sat}L} \approx WV_{sat}C_{ox}(V_G - V_T)^n$$
$$\implies \frac{\delta I_{D,sat}}{I_{D,sat}} = -n\frac{\delta V_T}{V_G - V_T}$$

L dependence

- Long channel: n ≈ 2, short channel: n ≈ 1
- Hence long channel degradation worse

I_D dependence

I_{D,sat} worse than I_{D,lin} due to n

Device Dependence

tox dependence

- With scaling, $t_{ox} \Downarrow$ and $V_G V_T$ (headroom) \Downarrow
- Hence thin oxide degradation worse for same V_T

$$\mu_{eff} \text{ dependence} \\ C_{it} = qD_{it} \quad \delta V_{\tau} = \frac{q\delta D_{it}}{C_{ox}} = \frac{q\delta D_{it}}{K_{ox}\varepsilon_{o}} t_{ox}$$

- For same V_T , as $t_{ox} \Downarrow \delta \mathsf{D}_{\mathsf{it}} \uparrow , \Rightarrow \mu_{\mathsf{eff}} \Downarrow$
- Hence mobility degradation worse for thin oxides

How Can This Be ?

- The lower picture is after the parts are moved
- Where does the missing hole come from?

Effect on Circuits

Inverter	V _{in}	V _{out}	<i>n</i> -MOS	<i>p</i> -MOS
Bias			Stress	Stress
1	V _{DD}	0 V	PBTI	Off State
2	0 V	V _{DD}	Off State	NBTI

CMOS Inverter Degradation

Effect on Circuits

- Occurs primarily in *p*-channel MOSFETs with negative gate voltage bias and is negligible for positive gate voltage
- In MOS circuits, it occurs most commonly during the "high" state of *p*-channel MOSFETs inverter operation
- Leads to timing shifts and potential circuit failure due to increased spreads in signal arrival in logic circuits
- Asymmetric degradation in timing paths can lead to non-functionality of sensitive logic circuits ⇒ product field failures

Circuit Dependence

t_d dependence

$$t_{d} = \frac{CV_{DD}}{I_{D}} \Rightarrow \frac{\delta t_{d}}{t_{d}} = n \frac{\delta V_{T}}{V_{G} - V_{T}}$$
$$\frac{\delta t_{d}}{t_{d}} = \frac{Kt^{0.25}}{V_{G} - V_{T}} \sqrt{E_{ox} \exp\left(\frac{E_{ox}}{E_{0}}\right)}$$

- Circuit delay degrades
 with V_τ increase
 - ISCAS C423: 10% after 10 yrs*

C_{GD} dependence

■ With stress, D_{it} \uparrow , C_{it} \uparrow , $\Rightarrow C_{GD}$ \uparrow

A.T. Krishnan et al., IEDM 14.5.1, 2003

Important for analog circuits (Miller effect)

* B.C. Paul et al., IEEE Electron Dev. Lett. 26, 560 (2005)

Circuit Degradation

Model	Accounts for NBTI impact on	RO Frequency Degradation (Digital)	Change in Unity Gain Bandwidth (Analog)
ν _τ Shifted Model	Channel charge	-3.2%	-1.0%
Degraded <i>I</i> - <i>V</i> only	Channel charge + Mobility	-4.5%	-1.3%
Including $C_{\rm GD}$ Degradation	Channel charge + Mobility + C _{GD}	-4.9%	-4.4%

V_T shifted model captures only ~60% (20%) of the degradation for digital (analog) circuits

A.T. Krishnan IRPS 2004

Circuit Degradation

- Degradation in digital circuits
 - FPGA performance
 - Ring oscillator f_{max}
 - SRAM static noise margin
 - Microprocessor
- Degradation in analog circuits
 - Current mirror
 - Operational amplifier

DC Versus AC Stress

- Stress creates interface traps (Si₃ ≡ Si •)
- **D**_{it} generation
 - Initially determined by Si-H dissociation rate
 - Later determined by hydrogen diffusion from interface
- When stress is terminated hydrogen diffuses back
 - Interface traps are passivated
- **dc**: D_{it} generation
- <u>ac</u>: *D_{it}* generation, passivation

ac stress leads to reduced degradation!

Damage Relaxation

- When stress is terminated, degradation relaxes
- For sufficiently long times, all damage is "healed"
 Important to indicate the time between stress termination and NBTI measurements

S. Rangan et al., IEDM, 2003

Damage Relaxation

- For sufficiently long recovery time, damage disappears
- Temperature dependent
- Higher temperature, less recovery
 - Hydrogen diffuses further from SiO₂/Si interface and is not available during recovery
 - If hydrogen diffuses all the way to the poly-Si gate, it may "disappear"

S. Rangan et al., IEDM, 2003

DC Versus AC Stress

- **Dynamic stress** \Rightarrow lifetime \Uparrow
- Transistors in circuit switch at different frequencies
 - Some transistors may not switch out of NBTI state
 - Could increase mismatch between paths switching at different rates

S.S. Tan et al. IRPS, 35 (2004)

Effect of Hydrogen

- Hydrogen commonly used for interface trap passivation (~400-450°C, 20-30 min)
- Hydrogen can exist as
 - Atomic hydrogen H⁰
 - Molecular hydrogen, H₂
 - Positively charged hydrogen or proton, H⁺
 - Part of the hydroxyl group, OH
 - Hydronium, H₃O⁺
 - Hydroxide ions, OH⁻
- Hydrogen is believed to be the main passivating species for Si dangling bonds and plays a major role during NBTI stress, when SiH bonds are depassivated ⇒ interface traps

Effect of Nitrogen

- Nitrogen may improve or degrade NBTI
- NBTI enhanced by nitrogen
- Nitrogen lowers activation energy
- Nitrogen profile affects impact
 - Lower N at interface is better
- Plasma nitridation gives least NBTI

N. Kimizuka et al., IEEE VLSI Symp. 92 (2000)

Effect of Nitrogen

- Grow thermal oxide
- NO anneal or plasma nitridation
- Reduced gate leakage current (same oxide thickness)
- Similar reliability
- Improved NBTI with plasma nitridation
- Improves both digital and mixed-signal performance

Effect of Nitrogen

B.Tavel et al., IEDM, 2003

Effect of Water

- Water in the oxide enhances NBTI
- D_{it} and Q_{ox} increases are observed in damp and wet oxides; diffusion species is water
- Wet H₂-O₂ grown oxide to exhibit worse NBTI than dry O₂ grown oxides
- Water is often present on wafers from contact and via formation
- Water and moisture mostly travel along interfaces
- Water-originated reaction has lower energy at the Si/SiO_xN_y interface than at the Si/SiO₂ interface

 \Rightarrow NBTI is enhanced by water incorporation in oxide

Effect of Fluorine

- Fluorine improves NBTI
- "Hardens" SiO₂/Si interface
- Fluorine is believed to relieve strain at SiO₂/Si interface

T.B. Hook et al., IEEE Trans. Electron Dev. 48, 1346 (2001)

Fluorine

- Incorporation of fluorine atoms into SiO₂ improves Q_{BD}
- SIMS and Fourier transform infrared spectroscopy ⇒ strained layers are localized near the SiO₂/Si interface
- Fluorine releases the distortion of the strained Si-O bonds
- Fluorine diffuses into gate-oxide
- React with the strained Si-O bonds and release the distortion
- Released oxygen atoms re-oxidize the Si-SiO₂ interface
- Forms Si-F instead of Si-H bonds
- Si-F bond stronger than Si-H bond

Effect of Deuterium

- Hot carriers degrade devices through: interface state generation, oxide charge trapping, mobility/transconductance degradation
- Post metallization anneal (~450 °C/30 min): forming gas or hydrogen
- Si-H bonds form at SiO₂/Si interface
- Si-H bonds easy to form, but also easy to break
- Si-D bonds are stronger (D: deuterium is a stable isotope of hydrogen with natural abundance of 0.0015%)
- Hot carrier resistance enhanced by D₂

W. F. Clark et al., IEEE Electron Dev. Lett. 20, 501 (1999)

Effect of Deuterium

- Deuterium improves NBTI
- A "heavy" variant of hydrogen
- Stable isotope of hydrogen containing a proton as well as a neutron in its nucleus
- Due to its heavier mass, Si-D bonds are more resistant than Si-H bonds to hot carrier stress as well as NBTI

Effect of Oxide Thickness

V_T shift, ΔV_T , depends on oxide thickness
 $\Delta V_T \sim t_{ox}$ for same interface trap density

$$\Delta V_{\tau} = \frac{Q_{it}}{C_{ox}} = \frac{qN_{it}}{K_{ox}\varepsilon_o} t_{ox}$$

M. Agostinelli et al., IRPS, 171 (2004)

Effect of Boron

- Boron degrades NBTI
- Boron diffuses into the gate oxide from the boron-doped gate and from the source/drain implants
 - Reduced D_{it} due to Si-F bonds from the BF₂ boron implant
 - Enhanced Q_{ox} due to increased oxide defects due to boron in the oxide

Yamamoto et al. *IEEE Trans. Electron Dev.* **46**, 921 (1999)

NBTI Minimization

- Have initially low densities of electrically active defects at the SiO₂/Si interface and keep water out of the oxide
- Silicon nitride encapsulation layer has been found effective in keeping water away from the active CMOS devices, improving NBTI performance
- Minimize stress and hydrogen content
- Keep damage at the SiO₂/Si interface to a minimum during processing
- Plasma damage degrades NBTI in *p*-MOSFETs, but not *n*-MOSFETs
- Deuterium improves both hot carrier stress and NBTI
- Important to ensure deuterium can get to the SiO₂/Si interface and passivate dangling bonds or replace the hydrogen with deuterium in existing Si-H bonds

NBTI Minimization

- Nitrogen incorporation has given conflicting results. Some authors claim an NBTI improvement, while others observe degradation
- The method and chemistry of oxide growth has significant effects on NBTI
- Wet oxides show worse NBTI degradation then dry oxides
- Fluorine leads to an improvement. F in the gate oxides can significantly improve NBTI and 1/f noise performance
- Boron degrades NBTI
- Oxide electric field important

Summary

NBTI

- Can be a significant contributor to *p*-MOSFET degradation in submicron devices
- Needs to be considered during optimization between device reliability and circuit performance
- Sensitive to a variety of process parameters, *e.g.*, hydrogen, nitrogen, fluorine, boron, etc.
- Can occur during *burn in*
- Can occur during circuit operation at elevated temperatures

What Is It?

