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What Is NBTI?What Is NBTI?
� Negative bias temperature instability occurs mainly in 

p-channel MOS devices
� Either negative gate voltages or elevated temperatures

can produce NBTI, but a stronger and faster effect is 
produced by their combined action
� Oxide electric fields typically below 6 MV/cm
� Stress temperatures: 100 - 250°°°°C 
� Drain current, transconductance, and                              

“off” current decrease
� Absolute threshold voltage

increase
� Such fields and temperatures                                    

are typically encountered                                       
during burn in, but are also                                           
approached in high-performance                                             
ICs during routine operation 105
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Parametric ImpactParametric Impact
� Material

� Interface traps, Dit

� Oxide charges, Not

� Device
� Threshold voltage, VT

� Transconductance, gm

� Subthreshold slope, S
� Mobility, µµµµeff

� Drain current, ID,lin, ID,sat

� Circuit
� Gate-to-drain capacitance, Cgd

� Delay time, td



Device Lifetime LimitsDevice Lifetime Limits

� NBTI – key reliability issue
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MOSFET PerformanceMOSFET Performance
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� MOSFET drain current depends on
� Dimensions: W, L, Cox ~ 1/tox

� Mobility: µµµµeff

� Voltages: VG, VD, VT

� Delay time: td
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Earliest NBTIEarliest NBTI
� Generation of fixed charge and interface states 

with negative gate bias was observed very early 
during MOS development – in 1967!
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Typical NBTI FeaturesTypical NBTI Features
� Interface traps, Dit, and positive oxide charges, 

Not, are generated at similar rates
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VVTT, Transconductance, Transconductance
� Charge pumping current Icp ~ interface state 

density Dit

� Transconductance gm ~ effective mobility µµµµeff ~ Dit
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Threshold VoltageThreshold Voltage

� Threshold voltage of p-channel MOSFETs 
decreases with stress time. Why?
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SiOSiO22 and SiOand SiO22/Si Interface/Si Interface

� Si, Si/SiO2 interface, SiO2 bulk, and oxide defect 
structure

This looks
really messy!

A: Si-Si Bond
(Oxygen Vacancy)
B: Dangling Bond
C: Si-H Bond
D: Si-OH Bond
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Interface TrapsInterface Traps
� Si has 4 electrons
� At the surface, Si atoms are 

missing: Dit ~ 1014 cm-2eV-1

� After oxidation: Dit ~ 1012 cm-2eV-1

� After forming gas (H2/N2) anneal:            
Dit ~ 1010 cm-2eV-1

� Dit are energy levels in the band 
gap at the Si surface

� Hydrogen is very important?



NBTI MechanismNBTI Mechanism
� A hole (h) is attracted to the Si/SiO2 interface
� It weakens the Si-H bond until it breaks
� The hydrogen (H) diffuses into the oxide or Si 

substrate
� If H diffuses into the Si, it can passivate boron ions

� Leaves an interface trap (Dit)



Holes Are The Problem !Holes Are The Problem !

J = 2.25x104 A/cm2
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Interface Trap ChargeInterface Trap Charge
� Band diagrams of the Si substrate of a p-channel MOS 

device shows the occupancy of interface traps and the 
various charge polarities for an n-substrate

� Acceptor with electron: negative charge
� Donor without electron: positive charge

� (a) negative interface trap charge at flat band 
� (b) positive interface trap charge at inversion

(Heavy line: interface trap occupied by an electron;        
light line: unoccupied by an electron)
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Threshold VoltageThreshold Voltage
� Nit and Nf ≈≈≈≈ 1010 cm-2; 0.1 µµµµm x 1.0 µµµµm gate (A = 10-9 cm2), 

there only 10 interface traps and 10 fixed oxide charges at 
the SiO2/Si interface under the gate ���� ∆∆∆∆VT

� For tox = 5 nm ���� ∆∆∆∆VT ≈≈≈≈ -5 mV. For ∆∆∆∆VT = -50 mV, device 
failure ���� ∆∆∆∆Nit = ∆∆∆∆Nf = 1011 cm-2

� Suppose that in a matched analog circuit, one MOSFET 
experiences ∆∆∆∆VT ≈≈≈≈ -10 mV and the other ∆∆∆∆VT ≈≈≈≈ -25 mV. This 
15 mV mismatch in a VT = -0.3 V technology ���� 5% 
mismatch. High performance analog transistor pairs that 
require mismatch tolerances of 0.1% to 0.01%.
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Reaction Reaction –– Diffusion ModelDiffusion Model
� Holes interact with Si-H bond
� Holes weaken Si-H bond
� At elevated temperature, the Si-H bonds dissociate

� Initially
� Dit generation ~ Si-H dissociation rate (reaction limited)

� Later
� Dit generation ~ hydrogen diffusion rate (diffusion limited)

++++++++ ++++••••≡≡≡≡→→→→++++≡≡≡≡ HSiSihSiHSi 33

M.A. Alam, IEDM, 2003; IRPS 2005



Reaction Reaction –– Diffusion ModelDiffusion Model
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Hydrogen ModelHydrogen Model
� Hydrogen from Si substrate drifts to SiO2/Si 

interface 
� Ho near/at SiO2/Si interface traps a hole ���� H+

� H+ depassivates Si-H bond ���� Dit and H2

� Some H+ drifts into SiO2 ���� Not

233 HSiSiHSiHSi ++++••••≡≡≡≡����++++≡≡≡≡ ++++

D.M. Fleetwood et al. Appl. Phys. Lett. 86, 142103 (2005)



Device DependenceDevice Dependence
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� Long channel: n ≈≈≈≈ 2, short channel: n ≈≈≈≈ 1
� Hence long channel degradation worse
ID dependence
� ID,sat worse than ID,lin due to n



Device DependenceDevice Dependence
tox dependence
� With scaling, tox ���� and VG-VT (headroom) ����
� Hence thin oxide degradation worse for same VT

µµµµeff dependence

� For same VT, as tox ���� δδδδDit ����, ���� µµµµeff ����

� Hence mobility degradation worse for thin oxides
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How Can This Be ?How Can This Be ?
� The lower picture is after the parts are moved
� Where does the missing hole come from?



Effect on CircuitsEffect on Circuits
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CMOS Inverter DegradationCMOS Inverter Degradation
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is dominant degradation 
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Effect on CircuitsEffect on Circuits

� Occurs primarily in p-channel MOSFETs with 
negative gate voltage bias and is negligible for 
positive gate voltage

� In MOS circuits, it occurs most commonly 
during the “high” state of p-channel MOSFETs 
inverter operation

� Leads to timing shifts and potential circuit 
failure due to increased spreads in signal 
arrival in logic circuits

� Asymmetric degradation in timing paths can 
lead to non-functionality of sensitive logic 
circuits ���� product field failures



Circuit DependenceCircuit Dependence
td dependence

� Circuit delay degrades                                       
with VT increase
� ISCAS C423: 10% after 10 yrs*

CGD dependence
� With stress, Dit ����, Cit ����,                                          
���� CGD ����

� Important for analog circuits (Miller effect) 
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Circuit DegradationCircuit Degradation

� VT shifted model captures only  ~60% (20%) of 
the degradation for digital (analog) circuits
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Circuit DegradationCircuit Degradation
� Degradation in digital circuits

� FPGA performance
� Ring oscillator fmax

� SRAM static noise margin
� Microprocessor

� Degradation in analog circuits
� Current mirror
� Operational amplifier



DC Versus AC StressDC Versus AC Stress
� Stress creates interface traps 

(              ) 
� Dit generation

� Initially determined by           
Si-H dissociation rate

� Later determined by 
hydrogen diffusion from 
interface

� When stress is terminated 
hydrogen diffuses back
� Interface traps are passivated

� dc: Dit generation
� ac: Dit generation, passivation

M.A. Alam, IEDM, 2003

ac stress leads to reduced degradation!

••••≡≡≡≡ SiSi3



Damage RelaxationDamage Relaxation

� When stress is terminated, degradation relaxes
� For sufficiently long times, all damage is “healed”
� Important to indicate the time between stress 

termination and NBTI measurements

� Threshold voltage
� Drain current
� Transconductance
� Interface traps
� Mobility

9

11

13

15

17

10-3 10-2 10-1 100 101 102 103

∆∆ ∆∆I
D

lin
 (%

)

Recovery Time (s)

T=125oC

Recovery 1 ms after 
    stress termination

S. Rangan et al., IEDM, 2003



Damage RelaxationDamage Relaxation
� For sufficiently long recovery time, damage 

disappears
� Temperature dependent
� Higher temperature, less recovery

� Hydrogen diffuses                                               
further from SiO2/Si                                                  
interface and is not                                            
available during                                                
recovery

� If hydrogen diffuses                                            
all the way to the                                              
poly-Si gate, it may                                                 
“disappear”

S. Rangan et al., IEDM, 2003
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DC Versus AC StressDC Versus AC Stress

� Dynamic stress ���� lifetime ����
� Transistors in circuit switch 

at different frequencies
� Some transistors may not 

switch out of NBTI state
� Could increase mismatch 

between paths switching at 
different rates
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Effect of HydrogenEffect of Hydrogen
� Hydrogen commonly used for interface trap 

passivation (~400-450°°°°C, 20-30 min)
� Hydrogen can exist as

� Atomic hydrogen H0

� Molecular hydrogen, H2

� Positively charged hydrogen or proton, H+

� Part of the hydroxyl group, OH
� Hydronium, H3O+

� Hydroxide ions, OH-

� Hydrogen is believed to be the main 
passivating species for Si dangling bonds and 
plays a major role during NBTI stress, when 
SiH bonds are depassivated ���� interface traps



Effect of NitrogenEffect of Nitrogen
� Nitrogen may improve or degrade NBTI 
� NBTI enhanced by nitrogen
� Nitrogen lowers activation energy
� Nitrogen profile affects impact

� Lower N at interface is better
� Plasma nitridation gives least NBTI
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Effect of NitrogenEffect of Nitrogen
� Grow thermal oxide
� NO anneal or plasma 

nitridation
� Reduced gate leakage 

current (same oxide 
thickness)

� Similar reliability
� Improved NBTI with 

plasma nitridation
� Improves both digital 

and mixed-signal 
performance
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Effect of NitrogenEffect of Nitrogen

B.Tavel et al.,  IEDM, 2003



Effect of WaterEffect of Water
� Water in the oxide enhances NBTI
� Dit and Qox increases are observed in damp and wet 

oxides; diffusion species is water
� Wet H2-O2 grown oxide to exhibit worse NBTI than dry 

O2 grown oxides 
� Water is often present on wafers from contact and via 

formation
� Water and moisture mostly travel along interfaces
� Water-originated reaction has lower energy at the 

Si/SiOxNy interface than at the Si/SiO2 interface
���� NBTI is enhanced by water incorporation in oxide



Effect of FluorineEffect of Fluorine

� Fluorine improves NBTI
� “Hardens” SiO2/Si interface
� Fluorine is believed to relieve strain at SiO2/Si 

interface

T.B. Hook et al., IEEE Trans. Electron Dev. 48, 1346 (2001)
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FluorineFluorine
� Incorporation of fluorine atoms 

into SiO2 improves QBD

� SIMS and Fourier transform 
infrared spectroscopy ���� strained 
layers are localized near the 
SiO2/Si interface

� Fluorine releases the distortion of 
the strained Si-O bonds

� Fluorine diffuses into gate-oxide 
� React with the strained Si-O bonds 

and release the distortion
� Released oxygen atoms re-oxidize 

the Si-SiO2 interface
� Forms Si-F instead of Si-H bonds
� Si-F bond stronger than Si-H bond

Y. Mitani et al. “Improvement of Charge-to-Breakdown Distribution by Fluorine 
Incorporation Into Thin Gate Oxides,” IEEE Trans. Electron Dev. 50, 2221, Nov. 2003
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Effect of DeuteriumEffect of Deuterium
� Hot carriers degrade devices through: interface state 

generation, oxide charge trapping, 
mobility/transconductance degradation

� Post metallization anneal (~450°C/30 min):                           
forming gas or hydrogen

� Si-H bonds form at SiO2/Si                                                   
interface

� Si-H bonds easy to form, but                                       
also easy to break

� Si-D bonds are stronger                                            
(D: deuterium is a stable isotope                               
of hydrogen with natural                                        
abundance of 0.0015%)

� Hot carrier resistance                                          
enhanced by D2

W. F. Clark et al., IEEE Electron Dev. Lett. 20, 501 (1999)
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Effect of DeuteriumEffect of Deuterium
� Deuterium improves NBTI
� A “heavy” variant of 

hydrogen
� Stable isotope of 

hydrogen containing a 
proton as well as a 
neutron in its nucleus

� Due to its heavier mass,  
Si-D bonds are more 
resistant than Si-H bonds 
to hot carrier stress as 
well as NBTI
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Effect of Oxide ThicknessEffect of Oxide Thickness

� VT shift, ∆∆∆∆VT, depends on oxide thickness
� ∆∆∆∆VT ~ tox for same interface trap density
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Effect of BoronEffect of Boron

� Boron degrades NBTI 
� Boron diffuses into the 

gate oxide from the 
boron-doped gate and 
from the source/drain 
implants 
� Reduced Dit due to Si-F 

bonds from the BF2 boron 
implant

� Enhanced Qox due to 
increased oxide defects 
due to boron in the oxide

100

101

102

103

104

105

106

0 0.2 0.4 0.6 0.8 1 1.2

Li
fe

tim
e 

(Y
ea

rs
)

Gate Length (µµµµm)

tox=6.5 nm

With B Penetration

Without B Penetration
T=100oC

Yamamoto et al. IEEE Trans. 
Electron Dev. 46, 921 (1999) 



NBTI MinimizationNBTI Minimization

� Have initially low densities of electrically active defects at 
the SiO2/Si interface and keep water out of the oxide

� Silicon nitride encapsulation layer has been found effective 
in keeping water away from the active CMOS devices, 
improving NBTI performance

� Minimize stress and hydrogen content 
� Keep damage at the SiO2/Si interface to a minimum during 

processing
� Plasma damage degrades NBTI in p-MOSFETs, but not      

n-MOSFETs
� Deuterium improves both hot carrier stress and NBTI 
� Important to ensure deuterium can get to the SiO2/Si 

interface and passivate dangling bonds or replace the 
hydrogen with deuterium in existing Si-H bonds



NBTI MinimizationNBTI Minimization
� Nitrogen incorporation has given conflicting 

results. Some authors claim an NBTI 
improvement, while others observe degradation

� The method and chemistry of oxide growth has 
significant effects on NBTI

� Wet oxides show worse NBTI degradation then 
dry oxides

� Fluorine leads to an improvement. F in the gate 
oxides can significantly improve NBTI and 1/f
noise performance 

� Boron degrades NBTI
� Oxide electric field important



SummarySummary

NBTI 
� Can be a significant contributor to p-MOSFET 

degradation in submicron devices
� Needs to be considered during optimization 

between device reliability and circuit 
performance

� Sensitive to a variety of process parameters, 
e.g., hydrogen, nitrogen, fluorine, boron, etc.

� Can occur during burn in
� Can occur during circuit operation at elevated 

temperatures
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