Sam Naffziger AMD Senior Fellow

High Performance Processors in a Power Limited World

Outline

Smarter Choice

Today's processor design landscape

• Trends

Issues making designer's lives difficult

- Power limits
- Scaling effects

Design opportunities

- Circuit level
- Architectural

Summary

The All Consuming Quest for Greater Performance at Lower Cost

Moore's Law has served us well.

Processor Frequency vs. Time

MPU Performance vs Time

The amazing frequency increases of the past decade have leveled off – Why? Power Limits Process Issues

Outline

Smarter Choice

Today's processor design landscape

• Trends

Issues making designer's lives difficult

- Power limits
- Scaling effects

Design opportunities

- Circuit level
- Architectural

Summary

Power Consumption Background

G. Moore, *Cramming more components onto integrated circuits*, Electronics, Volume 38, Number 8, April 19, **1965**

Power has always challenged circuit integration

We've been bailed out by technology in the past

ΔΜ

Smarter Choice

Scaling Background

Process scaling

Power Consumption Background

- Reducing Vdd
- Reducing C_{TOT}
- Reducing I_{LEAK}, I_{CO} –
- Reducing α
- But now, not only are those improvements fading, but we have a host of new challenges
- Variation
- Voltage droop
- Wire non-scaling

Switching Power

The Processor Designer

Crossover Power

 $P \approx \underbrace{C_{TOT} \cdot \alpha \cdot F \cdot V dd^2}_{TOT} + \underbrace{N_{TOT} \cdot \alpha \cdot F \cdot V dd \cdot I_{CO}}_{TOT} + \underbrace{N_{ON} \cdot I_{LEAK} \cdot V dd}_{TEAK} +$

The Process
 guys have had
 the biggest
 impact on
 these

Outline

Today's processor design landscape

Trends

Issues making designer's lives difficult

- Power limits
- Scaling effects

Design opportunities

- Circuit level
- Architectural

Summary

The Silicon Age Still on a Roll, But ...

High Volume Manufacturing	2004	2006	2008	2010	2012	2014	2016	2018
Technology Node (nm)	90	65	45	32	22	16	11	8
Delay = CV/I scaling	0.7	~0.7	>0.7	Delay scaling will slow down				
Energy/Logic Op scaling	>0.35	>0.5	>0.5	E	nergy sc	aling will	slow do	wn
Bulk Planar CMOS	Н	igh Prob	ability			Low	Probabili	ty
Alternate, 3G etc	L	ow Proba	ability			High	Probabili	ty
Variability		Mediu	m	Hig	h	Ver	y High	
RC Delay	1	1	1	1	1	1	1	1
scaling has some nasty side effects ୮୮ନ୍ତ Roadmap	trostatic control		ulk	anar			gat	e stack
Source: European	elec	PD	SOI		FDSOI	Μ	uCFET	
Vanoelectronics Initiative Advisory Council (ENIAC)		stressor	s	+ subs engine	strate ering		+ h mat	igh µ erials
		200 65	07 nm	2010 45n	m	2013 32nm	20	-)16 2nm

Device Variation Reverse Scales

Accuracy in 0.25 µm CMOS

The Problem: Atoms don't scale

Granularity on molecular level is reached: 0.25/0.25 transistor = 1200 doping atoms

$$\sigma_{\Delta VT} \propto \sqrt{1200} \approx 3\% V_T$$

Source: Pelgrom, IEEE lecture 5/11/06

Variations subtract directly off cycle time

- ➔power efficiency drops
- →Circuit margins degrade

Intel

Granularity on molecular level is reached: 0.1/0.065 transistor = 60-80 doping atoms in depletion region

$$\begin{array}{l} V_{T} \propto 80 \\ \sigma_{\Delta VT} \propto \sqrt{80} \approx 11\% V_{T} \end{array}$$

One impact of variation is leakage spreads

Scaling Intrinsically Hurts Supply Integrity Smarter Choice

With power per core staying constant but area, voltage and cycle times dropping, we have a big challenge Requiring a higher voltage to hit frequency is a quadratic power impact

Outline

Today's processor design landscape

• Trends

Issues making designer's lives difficult

- Power limits
- Scaling effects

Design opportunities

- Circuit level
- Architectural

Summary

Some Ways to Shoulder the Variation Burden: Adaptive clocking

Empirically set the clock edge to optimize frequency

Higher granularity \rightarrow more variation tolerance

 $L_{\ensuremath{\text{BIST}}}$ and GA search algorithms show promise for per-part optimization

Some Ways to Shoulder the Variation Burden: Self Healing Designs

Simplest example is cache ECC on memory arrays

Next level is Intel's Pellston technology implemented on Montecito and Tulsa

Disable defective lines detected by multiple ECC errors

Future directions involve self-checking with redundant logic and retry

- Predict result through parity, residues or redundant logic
- On an error, replay calculation before committing architectural state
- If replay correct, it was a transient error (particle strike, Vdd droop, random noise coupling etc.)
- If incorrect can reduce frequency, increase voltage or retry with an alternate execution path

Some Ways to Shoulder the Variation **Burden: Self Healing Designs**

All Rights Reserved, Copyright© FUJITSU LIMITED 2006

Adaptive Supply Voltage

Per-part and dynamic voltage management are key

More range flexibility and finer grain response will provide differentiation

Integrated Power and Thermal Management

"Fuse and forget" is no longer viable

Too much variation in environment, manufacturing and operating conditions

Some means of dynamic optimization needed

An autonomous programmable controller enables real time optimizations

Integrated Power and Thermal

An embedded controller provides the needed flexibility

OS interfacing

Management

- Multi-core management
- Per-part optimization

Outline

Today's processor design landscape

• Trends

Issues making designer's lives difficult

- Power limits
- Scaling effects

Design opportunities

- Circuit level
- Architectural

Summary

Traversing the Power Contour

Power Consumption

Traversing the Power Contour

Traversing the Power Contour for a Given Implementation

Energy / Operation

For Comparing Architectural Efficiency, Performance³/W is most effective

Performance³ / Watt

Optimal Pipeline Depth

V. Srinivasan et al., MICRO-35

A Look at Mobile System Power

If a laptop burned TDP power all the time, battery life would be measured in minutes

How do we get mobile average power so much lower than TDP?

The Answer: AMD Take Advantage of Typically Low CPU Utilization Smarter Choice

Reducing Power and Cooling Requirements with AMD Processor Performance States

clocks completely and dropping voltage to retention levels

Adding Features to Increase Performance

Increasing execution efficiency has, historically hurt power efficiency
However, the cubic reduction of power with V/F scaling has tended to make this a good tradeoff

Adding Features to Increase Performance Works with V/F Scaling

IPC

Voltage scaling has it limits

- ➔More power efficient designs have an advantage
- → High power designs get penalized due to higher di/dt, higher temperatures etc.

If we hit V_{MIN} however, the game is over

How Hard is Improving Existing Processors? AMD

Watts/(Spec*Vdd*Vdd*L)

Most of the Big hitter improvements have been heavily mined already

Smarter Choice

Next generation AMD cores have >> 50% of clocks gated off even for high power code

Multi-Core to the Rescue?

Cache		Cache			
Core	Core		Core		
Voltage = Frequency = Area = Power = Perf = Perf/Watt =	1 1 1 1 1 1	Voltag Freque Area Power Perf Perf/W	e =.85 ency =.85 =2 =1 ≈1.7 /att ≈1.7		

Sounds like a great story, what's the catch?

Multi-Core to the Rescue?

Some of the catches:

- What if you're already at V_{MIN}? Need to cut frequency in half to stay within power limit ⊗
- How much parallelizable code is really out there?
- More compute capacity means more IO and memory bandwidth demands ...

There is almost always a portion of an application that cannot be parallelized

Multi-Core Issues: Amdahl's Law

- This portion becomes a bottleneck as the number of threads is increased
- A typical value is in the range of 10%

Cache Cache Core Core Core Voltage =.85 Voltage =1 Frequency =.85Frequency =1Area =2 Area =1Power =1=1 Power Perf ≈1.7 Perf =1Perf/Watt ≈1.7 Perf/Watt = 1

Just 10% serial code drops 8 core performance improvement by 41%

Multi-Core Issues: IO Power

All those extra cores need their own data ...

IO power in terms of W/Gb/s has been pretty constant in the range of 20mW for years

If we increase IO power accordingly, but hold total chip power constant with V/F scaling, things get worse
Overall performance drops by another 10% or

SO

The Transition to Parallel Applications

Single-threaded Applications

Most of today's applications

Well understood optimization techniques

Advanced development, analysis and debug tools

Conceptually, easy to think about

Parallel Applications

Small number of applications (worked by experts for 10+ yrs)

Awkward development, analysis and debug environments

Parallel programming is hard!

Amdahl's law is still a law...

SW productivity is already in a crisis \rightarrow *this worsens things!*

Establishing an <u>appropriate balance</u> is key for managing this important transition

Other Architectural Directions: Integration

Not only does the integration of more system components (i.e. memory controllers, IO etc.) improve performance

Integration reduces power significantly as well

- IO communication overhead drops
- CPU integrated power management can dynamically optimize
- Power efficiency of special function components (i.e. graphics accelerators, network processors etc.) greatly exceeds that of general purpose CPUs

System-level Power Consumption

Dual-Core Packages with legacy technology

- 692 watts for processors (173w each)
- 48 watts for external memory controller

95% More Power

Dual-Core AMD Opteron™ processors

AMD

- 380 watts for processors (95w each)
- Integrated memory controllers

System-level Power Consumption

380 watts

Integrated memory controllers

• 48 watts for external memory controller

95% More Power

tual s

Other Architectural Directions: Integration

Integrating dual designs for processor core enable both peak performance and throughput/watt

Barriers?

- Integration of heterogeneous designs non-trivial
- IP barriers
- Schedule issues with multiple converging components

AMD Smarter Choice

Summary (1 of 2)

Silicon process technology is unlikely to be the major engine of processor performance increases in the future

Major circuit related challenges that we've only just started to address lie ahead:

- Design for variation tolerance and mitigation
- Maintaining dynamic voltage headroom within reliability and variation imposed limits
- Adaptive, self-healing techniques are a key direction

Summary (2 of 2)

Silicon process technology is unlikely to be the major engine of processor performance increases in the future

- CPU architectures are converging on modest pipe length, limited issue out of order designs
- Multi-core is good, but has limits in the not too distant future
- Heterogeneous integration is a key direction

We're up to the challenge, but it will be a joint effort ...