Bandwidth Extension Techniques for CMOS Amplifiers

David J. Allstot, Sudip Shekhar, and Jeffrey S. Walling

Dept. of Electrical Engineering University of Washington Seattle, WA 98195-2500

Outline

- Motivations: Performance and Low Power (bandwidth α g_m α [I]^{1/2}, settling time, rise time)
- Bridged-Shunt Peaking
- Bridged-Shunt-Series Peaking
- Asymmetric T-coil Peaking
- Wideband Amplifiers
- Results
- Conclusions

Motivation

- Broad Band Amplifiers
- Ultra Wideband (UWB) Receivers
- Transimpedance Amplifiers (TIAs)
- Pre-drivers and Mux/Demux

UWB Standards

MBOA (Multi-band OFDM Access) is supported by most of industry. Direct Sequence Spread Spectrum (DSSS) is primarily supported by Motorola/Freescale.

Optical Communications

Large Bandwidth Needed (~ 40Gb/s)

S. Galal and B. Razavi, "40Gb/s amplifier and ESD protection circuit in 0.18um CMOS technology," IEEE J. Solid-State Circuits, vol. 39, pp. 2389-2396, Dec. 2004.

H. Wheeler, "Wide-band amplifiers for television," *Proc. of the I.R.E*, pp. 429-438, July 1939.

F. A. Muller, "High-frequency compensation of RC amplifiers," *Proc. of the I.R.E*, pp. 1271-1276, Aug. 1954.

Common-Source Reference Amplifier

Gain-BW Tradeoff →Desire BW extension for a given gain →Power Dissipation Fixed for Comparison

Multi-Stage Amplifier Parasitics

 \rightarrow Desire BW extension for a given k_c

Peaking Techniques

Modify Conventional Peaking Techniques:

- Obtain larger BW extension ratio (BWER), smaller settling time
- Include (and exploit) parasitic effects
- Retain simplicity and generality
- Comprehensive design for different k_c values
 - Important Result: Use different techniques for different k_c values
- Bandwidth extension approaches:
- > Resonance, capacitor splitting, magnetic coupling

Terminology

- > BW extension ratio (BWER) = $f_{3dB, peak} / f_{3dB, ref}$
- > Settling Time (1%) reduction ratio (STRR) = $\tau_{s, ref} / \tau_{s, peak}$
- > Rise Time (10-90%) reduction ratio (RTRR) = $\tau_{r, ref} / \tau_{r, peak}$

BWER, STRR & RTRR hard to maximize simultaneously. Optimize for desired application.

MST = Minimum settling Time

Conventional Shunt Peaking

Conventional Shunt Peaking - II

m

1.84X & 1.5dB Peaking

Bridged-Shunt Peaking

Note: Inductor parasitic forms C_B Question: Interchange *L* and *R*?

Bridged-Shunt Peaking

 $m = 2.4, k_B = 0.3$

13

Bridged-Shunt Peaking - II

K _B	m	STRR	RTRR	BWER
0.0	1.4	0.70	2.18	1.84
0.1	2.84	2.40	1.74	1.69
0.3	2.4	1.39	1.87	1.83

Bridged-Shunt Peaking

- **Advantages**
- Incorporates inductor parasitics (Add more C_B if needed)
- ✓ Maximum BW possible with flat gain (No 1.5dB peaking)
- $\checkmark m \uparrow == L \checkmark \rightarrow$ Smaller Area
- \checkmark Area overhead for added C_B minimal

Conventional Series Peaking

$$Z_{N}(s) = \frac{1}{1 + s / \omega_{0} + s^{2} / m \omega_{0}^{2}}$$

Inferior to Shunt peaking

Series Peaking with Drain Parasitics

Series Peaking vs. k_c

Series Peaking with C₁: Summary

k _c = C₁/C	Peaking (dB)	<i>m=R²C/L</i>	BWER
0	0	2	1.41
0.1	0	1.8	1.58
0.2	0	1.8	1.87
0.3	0	2.4	2.52
	1	1.9	2.75
0.4	2	2.5	3.17
0.5*	3.3	1.5	2.65

* B. Analui and A. Hajimiri, "Bandwidth enhancement for transimpedance amplifiers," *IEEE J. Solid-State Circuits*, vol. 39, pp. 1263-1270, Aug. 2004.

Bridged-Shunt-Series Peaking

$$Z_{N}(s) = \frac{1 + \left(\frac{1}{m_{1}}\right)\frac{s}{\omega_{0}} + \left(\frac{k_{B}}{m_{1}}\right)\frac{s^{2}}{\omega_{0}^{2}}}{1 + \frac{s}{\omega_{0}} + \left(\frac{1 + k_{B}}{m_{1}} + \frac{1 - k_{C}}{m_{2}}\right)\frac{s^{2}}{\omega_{0}^{2}} + \left(\frac{k_{B}}{m_{1}} + \frac{k_{C}(1 - k_{C})}{m_{2}}\right)\frac{s^{3}}{\omega_{0}^{3}} + \left(\frac{(k_{C} + k_{B})(1 - k_{C})}{m_{1}m_{2}}\right)\frac{s^{4}}{\omega_{0}^{4}} + \left(\frac{k_{B}k_{C}(1 - k_{C})}{m_{1}m_{2}}\right)\frac{s^{5}}{\omega_{0}^{5}}$$

Bridged-Shunt-Series Peaking - II

Bridged-Shunt-Series Summary - I

<i>k_c=C₁/C</i>	Peak (dB)	$m_1 = R^2 C / L_1$	$m_2 = R^2 C / L_2$	k _B =C _B ∕C	BWER
0.4	0	8	2.4	0.3	3.92
0.4	2	6	2.4	0.2	4
0.5	2	6	2	0.2	3.53

Bridged-Shunt-Series Summary - II

k _c	k _B	m ₁	m ₂	STRR	RTRR	BWER
	0.0	6.3	2.6	1.32	2.73	3.47
0.4	0.16	8	2.2	1.46	2.78	3.11
0.4	0.2	6	2.4	0.71	2.89	4.00
	0.3	8	2.4	0.95	2.66	3.92
0.5	0.1	6	2	0.75	2.91	3.40
	0.2	6	2	0.77	2.88	3.53

Conventional Bridged T-Coil Peaking

B. Hofer, *Amplifier Frequency and Transient Response (AFTR) Notes*: Tektronix, Inc., 1982. Original notes from Carl Battjes. Tektronix used package lead inductors to implement Tcoils circa 1970.

Conventional Bridged T-Coil Peaking-II

Asymmetric T-Coil Summary - I

<i>k_c=C₁/C</i>	Peak (dB)	$m_1 = R^2 C L_1$	$m_2 = R^2 C L_2$	$k_m = M/\sqrt{L_1 L_2}$	BWER
	0	4	1.6	-0.7	4.63
0.1	1	3.5	1.2	-0.6	4.92
	2	3.5	1.6	-0.6	5.59
0.2	0	5.5	2.4	-0.6	4.14
	1	3	2	-0.6	4.51
	2	4	2.4	-0.5	4.86
0.3	0	4	2.8	-0.5	3.93
	1	3.5	2	-0.4	3.98
	2	4	2.8	-0.4	4.54

Asymmetric T-Coil Summary - II

Peaking Techniques: Summary

k _C	Desired BWER	Desired STRR (1%)	Optimal Peaking Method
0.1-0.5	<1.83	<2.4	Bridged Shunt
0.1-0.4	3-5.59	<4.1	Asymmetric T-coil
0.4-0.5	3-4	<1.5	Bridged-Shunt-Series

Prototype Amplifiers

BW = 10.4GHz

Asymmetric T-coil

- T-coil needs weak-coupling $\rightarrow k_m \sim 0.4$
- Simplicity, weak-coupling
 - → concentric-windings
- Two-pronged design method
 - → reduced design cycle
 - 1. Grover Calculations
 - 2. EM Simulation

F. W. Grover, *Inductance Calculations: Working Formulas and Tables*. New York: D. Van Nostrand Company, Inc., 1946.

Asymmetric T-coil - II

- T-coil EM simulation
 → freq. domain representation
- Transient simulation needs
 circuit model
- Proposed equivalent wideband circuit model
 - → incorporates skin-effect, bulk-eddy currents
- Good to first self-resonance

Measurement Results

Comparison

	Bandwidth Extension Technique	CMOS	S	ingle-stage	Multi-stage			
Reference		Tech. (nm)	Peaking (dB)	Single-stage BWER (Theory/Measured)	# Stages	Total Gain (dB)	Total Power (mW)	Total BW (GHz)
This work	Bridged-Shunt-Series	180	0.7	4.0/3.0	1	14.1	30	8
This work	Bridged-Shunt-Series	180	0.3	3.5/3.0	1	14.1	30	8
This work	Asymmetric T-coil with Negative Mutual Inductance	180	1.5	4.6/4.1	1	12.1	30	10.4
Galal, JSSC'04	Shunt-Series	180	1.8	3.5/NA	5	20.3	190	22
Kim, ISSCC'05	Asymmetric T-coil with Positive Mutual Inductance	130	0	3.23*/NA	-	-	-	42
Kanda, ISSCC'05	Shunt-Series	90	2.4	2/NA	2	-	21.6	20
Analui, ESSCIRC'02	Series Peaking	180	1.84-3	2.46/NA	3	56dBΩ	137.5 (single- ended)	9.2

* Simulated

Die Micrographs in 0.18µm CMOS

Conclusions

- Peaking techniques for larger BW extension
- Applicable to different *k*_C constraints
- Trade-off gain flatness for BW
- Amplifiers show large gain (>12dB) with largest BWER (4.1) reported.
- Wide bandwidth, high gain → fewer stages → power, area savings

Modified-Series Peaking

Peaking Response

Simulated normalized responses of (b) with (c) L_1 ideal, and (d) L_1 with typical parasitics in a CMOS implementation (π -model)

Anti-Staggered Series Peaking

g_m -Boosted CGLNA

*** X. Li, S. Shekhar and D.J. Allstot, "Low-power gm-boosted LNA and VCO circuits in 0.18um CMOS," IEEE Intl. Solid-State Circuits Conference, Feb. 2005, pp. 534,535,615. *** X. Li, S. Shekhar and D.J. Allstot, "Gm-boosted LNA and VCO Circuits in 0.18um CMOS," IEEE J. Solid-State Circuits, vol. 40, Dec. 2005.

Capacitor Cross-Coupled-CGLNA

W. Zhuo, X. Li, S. Shekhar, S.H.K. Embabi, J. Pineda de Gyvez, D.J. Allstot and E. Sanchez-Sinencio, "A capacitor cross-coupled commongate low noise amplifier," IEEE Trans. on Circuits and Systems I: Express Briefs, vol. 52, 2005.

- Lower Noise Figure
- **Lower DC Current**

$$A = \frac{1}{1 + C_{gs}/C_c}$$

- For C_c >> C_{gs} G_m = 2g_m

•
$$C_{in} = 4C_{gs}$$

•
$$F \approx 1 + \frac{\gamma}{2\alpha}$$

UWB CCCLNA

UWB LNA employing anti-stagger-compensated series peaking

Measurement Results

Measured S-parameters of two versions of the UWB LNA

Measurement Results

Measured (a) NF, and (b) IIP3 values of two versions of the UWB LNA

Performance Comparison

							FOM									
Ref.	CMOS Tech. (nm)	-3dB BW (GHz)	Power (mW)	<i>NF</i> (dB)	Max.S <i>21</i> (dB)	<i>IIP3</i> (dBm)	Area (mm²)	$\frac{Gain_{abs} \cdot BW_{GHz}}{(F-1) \cdot P_{mW}}$	$\frac{Gain_{abs} \cdot IIP3_{mW} \cdot BW_{GHz}}{(F-1) \cdot P_{mW}}$							
L NA #1	180	13-107	4.5	44-53	9.5 7.4 40.9	7.445.0.2 4.0		1.0	2.33 to 3.17	12.8 to 21.4						
LNA #1	100	1.5 - 10.7	4.5	4.4 - 5.5	0.5	7.4 10 8.5	1.0	(differential)								
L NA #2			10.55		7.6 10 0.4		2.69 to 3.64	15.5 to 29.6								
LNA #2	100	1.5 - 12.5	4.5	4.0 - 5.5	8.2 7.6 to 9.1	4.6 - 5.5 8.2 7.6 to 9.1 1.0 (differential)				ferential)						
141 400	190	22.02		40.90	4.0 - 9.0 9.3 -8.2 to - 5.6	-8.2 to - 5.6 1.1	4.4	0.32 to 1.48	0.05 to 0.41							
נין	100	2.3 - 9.2	5	4.0 - 9.0			(single-ended)									
[2]	[2] 180	0.5 - 14 52	52	34-54	10.6	9.4	1.6	0.36 to 0.74	3.11 to 6.45							
[2]			52				1.0	(sin	gle-ended)							
[2]	190	0.6 - 22	52 4.3 - 6.1	12 61	73	2 97	1 25	0.31 to 0.56	2.3 to 4.18							
[2]	100			52	4.3 - 0.1 7.3	7.5	0.7 1.35		(sin	gle-ended)						
Heydari,	190+	0°⁺ 0 - 12.6	0 - 12.6 19.8	2.9 9	96		0.70	2.02	0.92							
RFIC05	180				5.0	-3.4	0.78	(sin	gle-ended)							
Yazdi,	180+	180+ 0 - 25	0 - 25 54 4.8	48-7	197 04	4.7	4 22	0.33 to 0.65	0.97 to 1.93							
lsscc05	180*			54	54	54	54	54	54	54	0 - 25 54	- 25 54	4.8 - /	9.1	4.7	1.32

Wideband LNA Measured Performance Comparison

Chip Microphotographs

UWB LNA #1

UWB LNA #2

Chip Microphotographs; 0.18um RF CMOS

S. Shekhar, J.S. Walling and D.J. Allstot, "Bandwidth extension techniques for CMOS amplifiers," *IEEE J. Solid-State Circuits*, vol. 41, Nov. 2006.

Conclusions

- **Pros** 🙂
 - Large Bandwidth Extension
 - Low Power
 - Simple Input Match
 - Low Inductor Count
 - Flat Noise Figure
- Cons 😕
 - Low Gain
 - Bandwidth Extension Requires Two Stages/Nodes
 - 3dB Ripple Too Large for Some Applications
 - Sensitive Tuning