An Integrated Quad-Core AMD Opteron™ MicroProcessor

S. Searles¹, J. Dorsey¹, M. Ciraula², S. Johnson¹, N. Bujanos¹, D. Wu¹, M. Braganza¹, S. Meyers¹, E. Fang³, R. Kumar³

¹AMD, Austin, TX; ²AMD, Fort Collins, CO; ³AMD, Sunnyvale, CA
Outline

- Technology Highlights
- Major Features
- Clock/Voltage Domains and PLLs
- Cache Design Choices
- DDR DRAM I/O
- HyperTransport™ (HT) I/O
- Thermal Monitoring
- Mixed Signal Design Study (DDR)
Technology

- 65nm, SOI CMOS, 0.8-1.4V
- Dual strain liners + eSiGe
- Floating and Body tied
- 11 Cu layers + low-k
- 1X, 1.3X, 2X, 4X thick Cu
- F04 inv delay, 15ps

<table>
<thead>
<tr>
<th>Layer</th>
<th>Pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contacted Poly</td>
<td>270nm</td>
</tr>
<tr>
<td>M1</td>
<td>200nm</td>
</tr>
<tr>
<td>M2</td>
<td>200nm</td>
</tr>
<tr>
<td>M3</td>
<td>270nm</td>
</tr>
<tr>
<td>M4</td>
<td>270nm</td>
</tr>
<tr>
<td>M5</td>
<td>270nm</td>
</tr>
<tr>
<td>M6</td>
<td>400nm</td>
</tr>
<tr>
<td>M7</td>
<td>400nm</td>
</tr>
<tr>
<td>M8</td>
<td>400nm</td>
</tr>
<tr>
<td>M9</td>
<td>400nm</td>
</tr>
<tr>
<td>M10</td>
<td>800nm</td>
</tr>
<tr>
<td>M11</td>
<td>800nm</td>
</tr>
</tbody>
</table>
Cross Sections
Notable Attributes

- Monolithic, Quad x86 cores + Northbridge
- Symmetric cores, same DRAM/HT latency
- Enhanced 128b FPU
- Shared 32Way, 2MB L3
- Each core has an exclusive 16Way, 0.5MB L2
- Cores have 2Way, 64kB L1 I and D Caches
- 2 DDR channels, 4 DIMM/Channel, DDR2+3
- Enhanced HT links for 2 to 8Way MP
Die Overview

- 463 Million Transistors
- 283mm²
- 2.0GHz & up
- 0.8 to 1.4V
Voltage/Clock Domains

Multiple supplies for power optimization and isolation

- **VDDCORE**: 0.8V-1.4V
 - Core and L2: 2.0GHz and up
- **VDDNB**: 0.8V-1.4V
 - Northbridge and L3: 75% of core
- **VLDT**: 1.2V
 - HyperTransport links
- **VDDIO**: 1.8V (VTT:0.9V)
 - DDR I/O
- **VDDDA**: 2.5V
 - PLLs (10 across the die) + Thermal
Clock Domains

- Regional clock domains: lower power, tighter skew (12ps)
- Per core, independent PLL running at 2+GHz
- Independent Northbridge (NB) PLL running at $\frac{3}{4} \times$ core
- L3 uses the NB clock but at arbitrary phase
- DDR and HT interfaces have independent PLLs
- Source Synchronous clocked Buses connect I/O to NB.
- NB-2-core & core-2-NB communication: 16 entry FIFO.
 1. Asynchronous: Max performance: ~2 entry pointer separation.
 2. Synchronous: Provides deterministic operation for ATE.
Domain Crossing

- Domains have: different PLLs (wander) and voltages
- Wide operating range: 0.7 to 1.5V on either side
- Improved latency by embedding into a dynamic FIFO
- Precharge to VDD_B, evaluate with VDD_A
• PowerOK asserting: Valid voltage to all domains is present

• PowerOK signal originates in the VDDIO domain of the I/Os

• Propagates around the chip in VDDNB

• PowerOK passes from NB to all domains

• Power sniffer cell is designed with hysteresis to prevent spurious switching on power up.
• All PLLs run off of one 200MHz Reference Clock
 – Distributed by a binary tree of specially filtered repeaters
 – Low-pass power-supply filter, 2Mhz pole
 – Reduces feed-through jitter at PLL output: higher Fmax
 – 500ps skew target at 0.8V: deterministic test
PLL Features

- Accepts 100 or 200 MHz Ref Clock in
- Feedback divider from 1 to 64 (all codes)
- Spine divider (1, 2, 3, 4, 6, 128, 512) post VCO
- Deterministic Spine divider changes (P-state)
- Duty cycle correction on output to spine
- Clock shrink/stretch for speedpath debug
- Positive feedback delay control
- Center frequency is R dominated
- Constant swing output
PLL Close Loop Response

PLL Close Loop Response Gain, Phase vs Frequency

![Graph of PLL Close Loop Response Gain, Phase vs Frequency](image-url)
L1 Cache Bit Slice

- Single Ended
- Sink and Source for Writes
- Local and Global Bit lines
L1 Timing: Read Modified Write

- Single Ended for stability
- Precharge is self timed off Write
- Fuse control
- Allows ECC on partial writes
L2 & L3 Cache Bit Slice

- Like L1, Single Ended for stability
- 3 Level Bit Line

RAM ARRAY
32 Rows x 4 Cols

0.81um²

SuperBL
WRX

WR
PCH<1:0> COLSEL<7:0> PCHL<1:0>
L3 Timing

- Flexible tiling methodology: liquid L3
- Asynchronous timing for flexible layout

CaptureClk

RdData

HitWay

RdIndex

RdEn

CLK

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.5 Cycles

1 Cycle

1.5 Cycles
L2 & L3 Read Disturb Stability

- Product Reliability requires > 5 sigma margin
- Single-ended vs. small-swing: better margin
L2 & L3 Small Swing Study

- Study small swing (sense-amplifier-based)
- Increased ΔV_T & ΔL variation + SOI Hysteresys

With SOI Memory

- No flood (no flip) 7.9σ
- Flood (no flip) 7.2σ
- No flood (flip) 5.48σ
- Flood (flip) 4.53σ

No SOI Memory
DDR DRAM I/O

- Supports DDR2 & 3, 1.4 to 1.9V, 400 to 1600Mb/s
- 2 independent (R/W,W/R,R/R,W/W), 64b channels (+ECC)
- 4 DIMM/chan (U,R,SO), per-DIMM trained delay settings.
- 44 DLL/chan with dynamic delay update (per burst).

![Diagram of DDR DRAM I/O with components such as PLL, DLL, MemVref, DQ[7:0], DQ[3:0], and Rptr/Wptr.](image)
• DDR 800 (1250ps UI)
• Real Motherboard
• Under the Socket
• +/- 300mV margin
DDR DRAM Write Eye

DDR 800, no Channel, ATE
Trigger on gold clock

DDR 800, at the DIMM, real traffic,
Trigger on 0V Strobe crossing
HyperTransport™ I/O

- Backward Compatible (legacy) to HT1
 - 400, 800, 1200, 1600 and 2000 MT/s
- Supports all HT3 speed
 - 2.4, 2.8, 3.2, 4.0, 4.4, 4.8 and 5.2 GT/s
- Support various power saving modes
- Tolerates large HT3 common mode variation
- Linear TX equalization (de-emphasis)
- Non-linear RX equalization (DFE)
• Clock forwarded
• Simple DLL CDR
• SSC tolerant
HT Driver with Linear Eq

- Primary Voltage mode Driver
- Eq done with current sources
- Lower power when > 3dB of boost
HT RX with DFE
Thermal Sensor Locations

ThermCenter

Remote Diode Sensor

External Diode

ThermCenter
Thermal: Block Diagram

198μV = 1C

Reference I & V

Local Osc (20MHz)

Level Shifters

Temp[8:0]

Control Logic

ΔVbe & Scaler

ΣΔ A/D

CMP/Latch

Regulators

Regulated Supply for Digital Circuits

Regulated Supply for Analog Circuits

2.5V

I

I*9

ΔVbe & Scaler

ΣΔ A/D

CMP/Latch

Regulators

Regulated Supply for Digital Circuits

Regulated Supply for Analog Circuits

2.5V
Design Study (DS): DDR Phy

- Advice for Mixed-Signal IC designers
- Technology does not care about you
- When you overload functions, beware
- Always have software hooks (use all modes)
- Poly (or other) fuses are your friends
- Put Defaults in metal (one layer to change)
- Use servo loops to set bias conditions
- Use DACs for the servo loop reference
DS DDR: Register Space

- Use scalar bits if you have less than 50 bits
- Otherwise, use a simple bus and register
- Physical locality to where the bits are used
- Extensible: Easy to add bits and functions
- Add in write masks and broadcasts
- It will save your bacon
DS DDR: Servo Loop

- Use feedback to deal with PVT (servo)
- Use DACs to set the servo reference
Summary

• Monolithic, Quad x86 cores
• 65nm SOI CMOS, 11 Cu layers
• Integrated Northbridge
• Enhanced 128b FPU
• 2MB shared L3
• 2 independent DDR channels, DDR2 & 3
• Enhanced HT links for 2 to 8Way MP
• Comprehensive thermal monitoring