

Integrated Micromechanical Circuits for RF Front-Ends

Clark T.-C. Nguyen

Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, California 94720 <u>E-mail</u>: ctnguyen@eecs.berkeley.edu

IEEE SSCS Dist. Lec.—Fort Collins Nov. 30, 2007

Outline

- Introduction: Miniaturization of Transceivers
 heed for high-Q
- Micromechanical Resonators
 Clamped-clamped beams
 micromechanical disks
- Micromechanical Resonator Oscillators
- Micromechanical Circuits
 micromechanical filters
 impedance matching
 MSI mechanical circuits
- Conclusions

So Many Passive Components!

Multi-Band Wireless Handsets

Thin-Film Bulk Acoustic Resonator

Piezoelectric membrane sandwiched by metal electrodes
 ♦ extensional mode vibration: 1.8 to 7 GHz, Q ~500-1,500
 ♦ dimensions on the order of 200µm for 1.6 GHz
 ♦ link individual FBAR's together in ladders to make filters

All High-Q Passives on a Single Chip

Vibrating RF MEMS Wish List

Micro-scale wafer-level fabrication like >1,000 parts per die to at least achieve large-scale integration (LSI) complexity heed wafer-level packaging Single-chip integrated circuit or system capability b discrete parts not interesting Image: Second states with the second states withe second states with the second states w frequencies on a single-chip b need on-chip connectivity **b** integration w/ transistors desired

need real time reconfigurability

Q's >10,000 at RF might have a revolutionary impact

reconfigured w/o the need

for **RF MEMS** switches

Vibrating RF MEMS

BSAG

Basic Concept: Scaling Guitar Strings

Anchor Losses

Nanomechanical Vibrating Resonator

Constructed in SiC material w/ 30 nm AI metallization for magnetomotive pickup

Scaling-Induced Performance Limitations

Mass Loading Noise **Contaminant** [J. R. Vig, 1999] **Molecules** $f_o = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ **Nanoresonator** Mass ~10⁻¹⁷ kg **Differences in rates of**

adsorption and desorption of contaminant molecules & mass fluctuations & frequency fluctuations

<u>Temperature Fluctuation</u> Noise **Photons Nanoresonator** Volume ~10⁻²¹ m³ **Absorption/emission of** photons

temperature fluctuations
frequency fluctuations

Problem: if dimensions too small ⇒ phase noise significant!
 Solution: operate under optimum pressure and temperature
 C. T.-C. Nguyen, "Integrated Micromechanical Circuits for RF Front-Ends," SSCS Dist. Lec.—Fort Collins., 11/30/07

Radial-Contour Mode Disk Resonator

Multi-Band Wireless Handsets

• <u>Strategy</u>: make stem misalignment impossible

• <u>Below</u>:

- **Successive film depositions**
- line simultaneous definition of disk shape and stem location

• <u>Below</u>:

Set to the set of t

etch stem anchor

Photoresist

Self-Aligned Fabrication Process

• <u>Below</u>:

- 4 deposit thick polysilicon
- **b** pattern to define stem and electrodes

Self-Aligned Fabrication Process

• <u>Result</u>: micromechanical disk with perfectly centered stem and nano-scale electrode-to-resonator gaps

Tiny Lateral Transducer Gaps

 <u>Right</u>: zoom-in on the 80 nm gap achieved via the sacrificial sidewall spacer process

μMechanical Resonator *f_o-Q* Product

• Freq.-Q product rising exponentially over the past years

Micromechanical Resonator Oscillators

Oscillator: Need for High *Q*

- Main Function: provide a stable output frequency
- <u>Difficulty</u>: superposed noise degrades frequency stability

Polysilicon Wine-Glass Disk Resonator

C. T.-C. Nguyen, "Integrated Micromechanical Circuits for RF Front-Ends," SSCS Dist. Lec.—Fort Collins., 11/30/07

SAIG

Phase Noise in Oscillators

 Single Sideband Phase Noise Density to Carrier Power Ratio in Oscillator, L{f_m}

Wine Glass Disk Oscillator

Time & Freq. Domain Performance

Phase Noise Measurement

Integrated Micromechanical Circuits

Micromechanical Filter Design Basics

3CC

3CC 3λ/4 Bridged μMechanical Filter

Performance: *f*_o=9MHz, *BW*=20kHz, *PBW*=0.2% I.L.=2.79dB, Stop. Rej.=51dB h 20dB S.F.=1.95, 40dB S.F.=6.45 0 -10 ransmission [dB] -20 P_{in} =-20dBm Sharper roll-off Design: -30 *L*_{*r*}=40μm **Loss Pole** *W*_r=6.5µm -40 *h*_{*r*}=2μm $L_{c} = 3.5 \mu m$ -50 *L_b*=1.6μm [S.-S. Li, Nguyen, FCS'05] *V_P*=10.47V -60 *P*=-5dBm 8.7 8.9 9.1 $R_{Qi} = R_{Qo} = 12 \mathrm{k}\Omega$ **Frequency** [MHz] [Li, et al., UFFCS'04]

BSAC

Demo'ed Micromechanical Filters

Impedance Matching (Device Approach)

Solid Dielectric Capacitive Transducer

Tiny Lateral Solid-Dielectric Gaps

Air- vs. Solid-Gap Comparison

Benefit: Greatly Reduced DC-Bias

Piezoelectric µMechanical Resonators

Contour-mode, ring-shaped AIN Resonators

Driven laterally via the d₃₁ coefficient

[Piazza, Pisano MEMS'05]

- Freqs. up to 473 MHz (so far) determined by lateral dimensions!
- Q's sufficient for pre-select filters

Impedance Matching (Mechanical Circuit Approach)

Issue: Impedance Matching

Impedance Reduction Via Arraying

C. T.-C. Nguyen, "Integrated Micromechanical Circuits for RF Front-Ends," SSCS Dist. Lec.—Fort Collins., 11/30/07

24 I F

9-Wine-Glass Disk Composite Array

Wine Glass Disk Array Oscillator

163-MHz Differential Disk-Array Filter

Measured Filter Freq. Characteristics

SAR

Filter Measurement Over 300MHz Span

So Ma

So Many Passive Components!

RF Channel Selection

Motivation: Need for High Q

Motivation: Need for High *Q*

Motivation: Need for Q's > 10,000

Motivation: Need for Q's > 10,000

Motivation: Need for Q's > 10,000

BSA

Motivation: Need for Qs > 10,000

RF Channel-Select Filter Bank

Vibrating RF MEMS have achieved

Q's >10,000 at GHz frequencies in sizes less than 20 μm in diameter and w/o the need for vacuum encapsulation

- ♦ TC_f's < -0.24 ppm/°C (better than quartz)</p>
- saging at least on par with quartz
- circuit-amenable characteristics
- SVLSI potential

• Time to turn our focus towards mechanical circuit design and mechanical integration

maximize, rather than minimize, use of high-Q components
 e.g., RF channelizer
 paradigm-shift in wireless design
 even deeper
 frequency domain computation

• <u>Need</u>:

solution and higher tools for LSI and higher

- single-chip integrability with transistor circuits
- methods for frequency positioning
- ♦ continued scaling to nano-dimensions ⇒ >10 GHz …

Beginnings of a revolution reminiscent of the IC revolution?

Growing Vibrating RF MEMS Research

- <u>UC Berkeley</u>:
 ☆ Clark Nguyen, Al Pisano
 ☆ capacitive & AlN resonators
- <u>Hughes Research</u>:
 Randy Kubena
 quartz resonators

f_o = 473 MHz Q = 2,900 R_x ~ 80Ω

- <u>Cal Tech</u>:
 - Michael Roukes
 nanomechanical resonators
- Georgia Tech:
 ✤ Farrokh Ayazi
 ✤ SOI resonators
- Stanford:
 ✤ Tom Kenny, Roger Howe
 ✤ epi/SOI, SiGe resonators

- Former graduate students, especially
 Prof. Jing Wang, now at the Univ. of South Florida
 Dr. Sheng-Shian Li, now at RF Microdevices
 Dr. Yu-Wei Lin, now at Broadcom
- Much of the work shown was funded by grants from DARPA and by an NSF ERC in Wireless Integrated Microsystems