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Multi-Band Wireless Handsets
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Thin-Film Bulk Acoustic Resonator 
(FBAR)

• Piezoelectric membrane sandwiched by metal electrodes
extensional mode vibration: 1.8 to 7 GHz, Q ~500-1,500
dimensions on the order of 200μm for 1.6 GHz
link individual FBAR’s together in ladders to make filters

Agilent FBAR

• Limitations:
Q ~ 500-1,500, TCf ~ 18-35 ppm/oC
difficult to achieve several different freqs. on a single-chip

h

freq ~ thicknessfreq ~ thickness
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All High-Q Passives on a Single Chip

WCDMA
RF Filters

(2110-2170 MHz)

CDMA-2000
RF Filters

(1850-1990 MHz)

DCS 1800 RF Filter
(1805-1880 MHz)

PCS 1900 RF Filter
(1930-1990 MHz)

GSM 900 RF Filter
(935-960 MHz)

CDMA RF Filters
(869-894 MHz)

0.25 mm

0.5 m
m

Low Freq. 
Reference 
Oscillator 
Ultra-High 

Q Tank

Optional RF 
Oscillator 

Ultra-High Q
Tanks

Vibrating Resonator
62-MHz, Q~161,000

Vibrating Resonator
62-MHz, Q~161,000

Vibrating Resonator
1.5-GHz, Q~12,000

Vibrating Resonator
1.5-GHz, Q~12,000
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Vibrating RF MEMS Wish List

•• MicroMicro--scale waferscale wafer--level fabricationlevel fabrication
would like >1,000 parts per die 
to at least achieve large-scale 
integration (LSI) complexity
need wafer-level packaging

•• SingleSingle--chip integrated circuit or chip integrated circuit or 
system capabilitysystem capability

discrete parts not interesting
must allow many different 
frequencies on a single-chip
need on-chip connectivity
integration w/ transistors 
desired
need real time reconfigurability

•• QQ’’s >10,000 at RF might have a s >10,000 at RF might have a 
revolutionary impactrevolutionary impact

Frequencies should be 
determined by lateral 

dimensions (e.g., by layout)

Frequencies should be 
determined by lateral 

dimensions (e.g., by layout)

Best if systems can be 
reconfigured w/o the need 

for RF MEMS switches

Best if systems can be 
reconfigured w/o the need 

for RF MEMS switches

900 MHz

1800 MHz

433 MHz200 MHz

70 MHz

1900 MHz
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Vibrating RF MEMS
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Basic Concept: Scaling Guitar Strings
Guitar String
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Freq. Equation:

Freq.

Stiffness

Mass

fo=8.5MHz
Qvac =8,000

Qair ~50

μMechanical Resonator

Performance:
Lr=40.8μm

mr ~ 10-13 kg
Wr=8μm, hr=2μm
d=1000Å, VP=5V
Press.=70mTorr

[Bannon 1996]
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Anchor Losses

Q = 15,000 at 92MHz

Fixed-Fixed Beam Resonator

GapAnchor AnchorElectrode

Problem: direct 
anchoring to the 

substrate anchor 
radiation into the 

substrate lower Q

Problem: direct 
anchoring to the 

substrate anchor 
radiation into the 

substrate lower Q

Solution: support at 
motionless nodal points 

isolate  resonator 
from anchors less 

energy loss higher Q

Solution: support at 
motionless nodal points 

isolate  resonator 
from anchors less 

energy loss higher Q

Lr

Free-Free Beam

Supporting Beams

λ/4

Anchor

Anchor

Elastic Wave
Radiation

Q = 300 at 70MHz

Free-Free Beam Resonator
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• Constructed in SiC material w/ 30 nm Al metallization for 
magnetomotive pickup
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Design/Performance:
Lr =1.1 μm, Wr =120 nm, h= 75 nm

fo=1.029 GHz, Q =500 @ 4K, vacuum

Design/Performance:
Lr =1.1 μm, Wr =120 nm, h= 75 nm

fo=1.029 GHz, Q =500 @ 4K, vacuum

[Roukes, Zorman 2002]

Nanomechanical Vibrating Resonator
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Scaling-Induced Performance 
Limitations

Mass Loading Noise

• Differences in rates of 
adsorption and desorption of 
contaminant molecules

mass fluctuations
frequency fluctuations

Temperature Fluctuation 
Noise

• Absorption/emission of 
photons

temperature fluctuations
frequency fluctuations

Contaminant
Molecules

Nanoresonator
Mass ~10-17 kg

m
k

2π
1

of =

Photons

Nanoresonator
Volume ~10-21 m3

• Problem: if dimensions too small phase noise significant!
• Solution: operate under optimum pressure and temperature

[J. R. Vig, 1999]
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Radial-Contour Mode Disk Resonator
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Note: If VP = 0V 
device off
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1.51-GHz, Q=11,555 Nanocrystalline 
Diamond Disk μMechanical Resonator

• Impedance-mismatched stem for 
reduced anchor dissipation

• Operated in the 2nd radial-contour mode
• Q ~11,555 (vacuum); Q ~10,100 (air)
• Below: 20 μm diameter disk

Polysilicon
Electrode R

Polysilicon Stem
(Impedance Mismatched

to Diamond Disk)

Ground
Plane

CVD Diamond
μMechanical Disk
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Design/Performance:
R=10μm, t=2.2μm, d=800Å, VP=7V
fo=1.51 GHz (2nd mode), Q=11,555

fo = 1.51 GHz
Q = 11,555 (vac)
Q = 10,100 (air)

[Wang, Butler, Nguyen MEMS’04]

Q = 10,100 (air)
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Self-Aligned Fabrication Process

• Strategy: make stem misalignment impossible
• Below:

successive film depositions
simultaneous definition of disk shape and stem location

Silicon Substrate

Silicon
NitridePolysiliconOxide Polydiamond
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Self-Aligned Fabrication Process

• Below:
define electrode-to-resonator gap spacing via sacrificial 
oxide sidewall spacer
etch stem anchor

Silicon Substrate

Sacrificial
Oxide

Sidewall
Spacer

Photoresist
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Self-Aligned Fabrication Process

• Below:
deposit thick polysilicon
pattern to define stem and electrodes

Silicon Substrate

Polysilicon
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Self-Aligned Fabrication Process

• Result: micromechanical disk with perfectly centered stem and 
nano-scale electrode-to-resonator gaps

Silicon Substrate

Sturdy Polysilicon
Electrode (stronger 

than previous metal)

Sturdy Polysilicon
Electrode (stronger 

than previous metal)

Tiny Gaps (50 
nm gaps have 
been achieved)

Tiny Gaps (50 
nm gaps have 
been achieved)

Micromechanical 
Disk Structure

Micromechanical 
Disk Structure

Self-Aligned Stem 
Perfectly Placed 
at Disk Center

Self-Aligned Stem 
Perfectly Placed 
at Disk Center
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Output

Input Anchor

d = 80 nm• Right: zoom-in 
on the 80 nm 
gap achieved via 
the sacrificial 
sidewall spacer 
process

Tiny Lateral Transducer Gaps
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•Freq.-Q product rising exponentially over the past years
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fo = 1.51 GHz
Q = 11,555

silicon

μMechanical Resonator fo-Q Product

Intrinsic material 
Q limit nowhere 

in sight?

Intrinsic material 
Q limit nowhere 

in sight?
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Micromechanical Resonator 
Oscillators
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• Main Function: provide a stable output frequency
• Difficulty: superposed noise degrades frequency stability

ωωο
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oi

A

Frequency-Selective
Tank

Sustaining
Amplifier

ov
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⎠
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⎛= tofVotov π2sin

Real Sinusoid: ( ) ( ) ( )⎟
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⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ++= ttoftVotov θπε 2sin

ωωο

ω
ωο=2π/TO

TO

Zero-Crossing Point

Tighter SpectrumTighter Spectrum

Oscillator: Need for High Q

Higher QHigher Q
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Output
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Input

Output

Support 
Beams

Wine Glass 
Disk Resonator

R = 32 μm

Anchor

Anchor

Resonator Data
R = 32 μm, h = 3 μm
d = 80 nm, Vp = 3 V

Resonator Data
R = 32 μm, h = 3 μm
d = 80 nm, Vp = 3 V
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Polysilicon Wine-Glass Disk Resonator

[Y.-W. Lin, Nguyen, JSSC Dec. 04]

Compound 
Mode (2,1)
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Phase Noise in Oscillators

• Single Sideband Phase Noise Density to Carrier Power 
Ratio in Oscillator, L{fm}

Offset Frequency [Hz]
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•• High High QQ
reduces close-to-carrier 
phase noise

•• High High PPoo
reduces far-from-carrier 
phase noise
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Wine Glass Disk Oscillator

Wine-Glass Disk 
Resonator (Q=48,000)

VDD = 1.65 V

VSS = -1.65V

M3
M4

M1 M2

MRf

Vbias2

Vbias1

M11 M12 M13 M14

Vcm

M17
M18

M16M15
Output

Input

M5

Shunt-Shunt Feedback 
Tranresistance Amplifier

Common Mode 
Feedback Bias Circuit

VP

vi

io

Bond Wire 
Connection
Bond Wire 
Connection

MOS 
Resistor
MOS 

Resistor

VP=12V Rx=1.5kΩVP=12V Rx=1.5kΩ
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OutputOutput Custom IC 
fabricated 
via TSMC 
0.35μm 
process

Custom IC 
fabricated 
via TSMC 
0.35μm 
process

InputInput

200 mV
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Oscilloscope 
Waveform

Oscilloscope 
Waveform

Spectrum 
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Output

Spectrum 
Analyzer 
Output

[Y.-W. Lin, Nguyen, ISSCC’04]
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For Comparison

[Y.-W. Lin, Nguyen, JSSC’04]

1/f 3

Phase Noise Measurement

-130 dBc/Hz @ 1 kHz-130 dBc/Hz @ 1 kHz

-147 dBc/Hz-147 dBc/Hz

Nearly satisfies Global System for 
Mobile Communications (GSM) 

phase noise specifications!

Nearly satisfies Global System for 
Mobile Communications (GSM) 

phase noise specifications!
Requires only 300 μW

and 150 x 150 μm2!
Requires only 300 μW

and 150 x 150 μm2!

f

Po
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Integrated Micromechanical Circuits
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Micromechanical Filter Design Basics
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Pin=-20dBm

In Out

VP

Sharper 
roll-off

Sharper 
roll-off

Loss PoleLoss Pole

Performance:
fo=9MHz, BW=20kHz, PBW=0.2%

I.L.=2.79dB, Stop. Rej.=51dB
20dB S.F.=1.95, 40dB S.F.=6.45

Performance:
fo=9MHz, BW=20kHz, PBW=0.2%

I.L.=2.79dB, Stop. Rej.=51dB
20dB S.F.=1.95, 40dB S.F.=6.45

Design:
Lr=40μm 

Wr=6.5μm 
hr=2μm

Lc=3.5μm
Lb=1.6μm 
VP=10.47V
P=-5dBm

RQi=RQo=12kΩ

[S.-S. Li, Nguyen, FCS’05]

3CC 3λ/4 Bridged μMechanical Filter

[Li, et al., UFFCS’04]
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Micromechanical Filter Circuit

1/krmr cr 1/krmr cr 1/krmr cr-1/ks -1/ks

1/ks

-1/ks -1/ks

1/ks

1/kb 1/kb

-1/kb

Co Co

1:ηe ηe:1
1:ηc 1:ηcηc:1 ηc:1

1:ηb ηb:1

λ/4

λ/4

3λ/4
Input

Outputvi

RQ

RQ

vo

VP

Bridging Beam
Coupling Beam

Resonator

ω

vo
vi



C. T.-C. Nguyen, “Integrated Micromechanical Circuits for RF Front-Ends,” SSCS Dist. Lec.—Fort Collins., 11/30/07

Micromechanical Filter Circuit
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Micromechanical Filter Circuit
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values determined 
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Amenable to 
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Amenable to 
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[Wang, MEMS’97]
HF Micromech. Filter
[Bannon, IEDM’96]
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Sharper 
roll-offs

Sharper 
roll-offs

Bridged μMech. Filter
[S.-S. Li, UFFCS’2004]
Bridged μMech. Filter
[S.-S. Li, UFFCS’2004]

fo = 9.3MHz
IL < 2.8dB
RQ = 12kΩ

fo = 9.3MHz
IL < 2.8dB
RQ = 12kΩ

fo = 7.8 MHz
IL < 2dB
RQ = 14.7kΩ

fo = 7.8 MHz
IL < 2dB
RQ = 14.7kΩ

Loss poleLoss pole

• MEMS Filters excellent insertion loss
• Problem: high impedance & poor power handling

Demo’ed Micromechanical Filters
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Impedance Matching
(Device Approach)
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Solid Dielectric Capacitive Transducer

Antenna

r h

Gap = d

VP

Disk Electrode Electrode

Air Gap 
w/ ε = εo

Solid Dielectric w/ Solid Dielectric w/ 
εε = = εεrrεεoo in the Gapin the Gap

DiskΔGap κ times
Permittivity ε εr times

ΔGap κ times
Permittivity ε εr times

Rx εr
2/κ times

( ) 222

4

22
1

hV
d

Q
k

r
R

Po

r
x εωπ

⋅=

377Ω

kr = 7,350,000 N/m

5kΩ

Mismatch!

ResonanceResonance

Opportunity: increase permittivity ε
square law reduction in Rx

Opportunity: increase permittivity ε
square law reduction in Rx
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Output

Input
Anchor

Tiny Lateral Solid-Dielectric Gaps

d = 80 nm

20nm 20nm 
Nitride GapNitride Gap

ElectrodeElectrode

Disk Disk 
ResonatorResonator

No small gap etch 
diffusion bottleneck 

release step much 
faster than air gap case

No small gap etch 
diffusion bottleneck 

release step much 
faster than air gap case

[Y.-W. Lin, C. Nguyen FCS’05]
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Air- vs. Solid-Gap Comparison
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60-MHz Wine-Glass Disk Data
In Vacuum, R = 32 µm, h = 3 µm

do = 80 nm (air gap)
VP = 8 V, Pin = -10 dBm

fo = 61.927 MHz
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60-MHz Wine-Glass Disk Data
In Vacuum,  = 32 µm, h = 3 µm

do = 20 nm (nitride gap) 
VP = 8 V, Pin = -30 dBm

fo = 61.855 MHz

Frequency [MHz]
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 [d
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] Q = 36,814

Rx = 3.2 kΩRx = 42.67 kΩ

Rx 13X smallerRx 13X smaller

60-MHz WG Disk w/ Air Gap 60-MHz WG Disk w/ Solid Gap

Q is still 
very high 
even with 
solid gap

Q is still 
very high 
even with 
solid gap

Resonance 
frequency 
remains 

virtually the 
same!

Resonance 
frequency 
remains 

virtually the 
same!

Air GapAir Gap

Solid GapSolid Gap

[Y.-W. Lin, C. 
Nguyen FCS’05]
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Benefit: Greatly Reduced DC-Bias

To achieve 50To achieve 50ΩΩ impedance, the DCimpedance, the DC--Bias voltage can be Bias voltage can be 
reduced from 147V to 0.91V using solid gap technologyreduced from 147V to 0.91V using solid gap technology
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(ε = 1)

20nm nitride
(ε = 7.8)

20nm HfO2
(ε = 25)

20nm TiO2
(ε = 80)

20nm BaSrTiO3
(ε = 300)

147V11V 35V

3.5V
0.91V

fo = 60 MHz
Q = 40,000

fo = 60 MHz
Q = 40,000

R = 32 μm
h = 3 μm

R = 32 μm
h = 3 μm

Assume Rx = 50Ω
is required

Assume Rx = 50Ω
is required
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Temperature [oC]

20 μm

Piezoelectric μMechanical Resonators

• Contour-mode, ring-shaped AlN Resonators
• Driven laterally via the d31 coefficient 

TCF ~ -24.7 ppm/ºCTCF ~ -24.7 ppm/ºC

• Freqs. up to 473 MHz (so far) 
determined by lateral dimensions!

• Q’s sufficient for pre-select filters

Tr
an

sm
is

si
on

 [d
B

] -50

-60

-70

-80

-90
474.25 484.25464.25

Frequency [MHz]

fo~473 MHz       
Q ~2,900 in air

Rx~80 Ω

fo~473 MHz        
Q ~2,900 in air

Rx~80 Ω

[Piazza, Pisano MEMS’05]
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Impedance Matching
(Mechanical Circuit Approach)
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• Impedance matching needed
not a new problem …
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Po
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x ⋅=

ωπ

μMechanical Disk Resonator

Antenna

377Ω

ResonanceResonance

kr = 7,350,000 N/m

5kΩ

Mismatch!

VDD

VSS

Off-Chip
Capacitor

(2 pF)

Minimum
Size

Inverter

2fF
Progressively Larger Inverters

r h

Gap = d

VP

Issue: Impedance Matching
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Impedance Reduction Via Arraying
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Support Beams Wine-Glass
Disk

Anchor

Input
Electrode

Coupling Beam

Output
Electrode

R = 32 μm

9-Wine-Glass Disk Composite Array
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Q = 118,900
Rx = 2.56 kΩ

9-Resonator
QQ = 118,900= 118,900
Rx = 2.56 kΩ

1-Resonator
Q = 161,000

Rx = 11.73 kΩ

1-Resonator
QQ = 161,000= 161,000

Rx = 11.73 kΩ
Wine-glass disks 

retain Q’s >100,000 
even in large arrays!

Wine-glass disks 
retain Q’s >100,000 

even in large arrays!

Data
R = 32 μm
h = 3 μm

d = 80 nm
VP = 7 V

Data
R = 32 μm
h = 3 μm

d = 80 nm
VP = 7 V
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Wine Glass Disk Array Oscillator

VDD = 1.65 V

VSS = -1.65V

M3
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Vbias2

Vbias1
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Wire
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Resistor

io

Wine-Glass 
Disk Array-
Composite 
Resonator
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Disk Array-
Composite 
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VP=7V 
Rx=2.5kΩ

Q = 118,900
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OutputOutput
Custom IC 
fabricated 
via TSMC 
0.35μm 
process

Custom IC 
fabricated 
via TSMC 
0.35μm 
process

InputInput

GSM-Compliant Oscillator

[Y.-W. Lin, Nguyen, IEDM’05]
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9-Wine-Glass Disk Array
Q = 118,900 , Rx = 2.56 kΩ
9-Wine-Glass Disk Array
QQ = 118,900 = 118,900 , Rx = 2.56 kΩ

9-WG Disk Array @ 62 MHz9-WG Disk Array @ 62 MHz

Single WG Disk @ 62 MHzSingle WG Disk @ 62 MHz

Down to 
13 MHz

Down to 
13 MHz

GSM specGSM spec

Satisfies Global System for 
Mobile Communications (GSM) 

phase noise specifications!

Satisfies Global System for 
Mobile Communications (GSM) 

phase noise specifications!

All made possible by 
mechanical circuit design!

All made possible by 
mechanical circuit design!
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[Li, Nguyen Trans’07]

163-MHz Differential Disk-Array Filter
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High Q & Low RX

RQ ~ 1.5kΩRQ ~ 1.5kΩ

RQ ~ 50ΩRQ ~ 50Ω

Measured Filter Freq. Characteristics
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Wireless 
Phone

So Many Passive Components!

26-MHz Xstal
Oscillator

26-MHz Xstal
Oscillator

DiplexerDiplexer

925-960MHz 
RF SAW Filter
925-960MHz 

RF SAW Filter
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RF SAW Filter

897.5±17.5MHz 
RF SAW Filter

RF Power 
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Transistor Chip
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3420-3840MHz 
VCO
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90o
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RF PLL

Diplexer

From TX

RF 
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Mixer I

Mixer Q

LPF
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RXRF LO
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I

Q

AGC

AGC

LNA

Antenna

Problem: high-Q passives pose a 
bottleneck against miniaturization
Problem: high-Q passives pose a 
bottleneck against miniaturizationNo longer a problem!No longer a problem!

Use as many high-Q
passives as desired!
Use as many high-Q
passives as desired!

Seemingly limitless 
possibilities …

Seemingly limitless Seemingly limitless 
possibilities possibilities ……
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RF Channel Selection
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Motivation: Need for High Q
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Motivation: Need for Q’s > 10,000
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Motivation: Need for Q’s > 10,000
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Motivation: Need for Q’s > 10,000
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RF Channel-Select Filter Bank

Bank of UHF 
μmechanical

filters

Bank of UHF 
μmechanical

filters
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Conclusions

•• Vibrating RF MEMS have achievedVibrating RF MEMS have achieved
Q’s >10,000 at GHz frequencies in sizes less than 20 μm in 
diameter and w/o the need for vacuum encapsulation
TCf’s < -0.24 ppm/oC (better than quartz)
aging at least on par with quartz
circuit-amenable characteristics 
VLSI potential

•• Time to turn our focus towards mechanical circuit design and Time to turn our focus towards mechanical circuit design and 
mechanical integrationmechanical integration

maximize, rather than minimize, use of high-Q components
e.g., RF channelizer paradigm-shift in wireless design
even deeper frequency domain computation

•• NeedNeed::
automated design tools for LSI and higher
single-chip integrability with transistor circuits
methods for frequency positioning
continued scaling to nano-dimensions >10 GHz …

•• Beginnings of a revolution reminiscent of the IC revolution?Beginnings of a revolution reminiscent of the IC revolution?
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• UC Berkeley:
Clark Nguyen, Al Pisano
capacitive & AlN resonators

• Hughes Research:
Randy Kubena
quartz resonators

• Cal Tech: 
Michael Roukes
nanomechanical resonators

• Georgia Tech:
Farrokh Ayazi
SOI resonators

• Stanford:
Tom Kenny, Roger Howe
epi/SOI, SiGe resonators

fo = 1.03 GHz
Q = 500

fo = 1.03 GHz
Q = 500

Growing Vibrating RF MEMS Research

fo = 473 MHz
Q = 2,900
Rx ~ 80Ω

fo = 473 MHz
Q = 2,900
Rx ~ 80Ω
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