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Collaborative Projects
• SW+Arch+HW for efficient power delivery

– Understanding Voltage Variations in CMPs Using a Distributed 
Power Delivery Network (DATE ’07)

– Toward a SW Approach to Mitigate Voltage Emergencies 
(ISLPED’07)

– DeCoR: A Delayed-Commit and Rollback  Mechanism for 
Handling Inductive Noise in Processors (HPCA’08)

– System-Level Analysis of Fast, Per-Core DVFS using On-Chip 
Switching Regulators (ASGI’07, HPCA’08)

• SW+Arch+HW to combat process variations
– Mitigating the Impact of Process Variation on CPU RF and 

Execution Units (MICRO’06)
– Process Variation Tolerant 3T1D-Based Cache Architectures 

(ASGI’07, MICRO’07)
– A Process Variation Tolerant FPU with Voltage Interpolation and 

Variable Latency (ISSCC’08 )
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Today’s Topics
• System-Level Analysis of Fast, Per-Core 

DVFS using On-Chip Switching 
Regulators
– Wonyoung Kim, Meeta Gupta, Wei and 

Brooks
– To be presented at HPCA in Feb. 2008

• Process Variation Tolerant 3T1D-Based 
Cache Architectures
– Xiaoyao (Alex) Liang, Ramon Canal (UPC 

Barcelona), Gu-Yeon Wei and David Brooks
– To be presented at MICRO in Dec. 2007
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SYSTEM-LEVEL ANALYSIS OF FAST, 
PER-CORE DVFS USING ON-CHIP 
SWITCHING REGULATORS

Seminar Part 1
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Voltage Variability Movie
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Motivating Example

• Can we move the off-chip regulator onto the processors?
• If yes, WHY?
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Supply Noise Comparison
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Fast DVFS

• Off-chip regulators limited to microsecond-scale transitions
• On-chip regulators enable nanosecond-scale voltage 

transitions
– Can we leverage this fast switching?
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Outline
• Motivation
• Offline DVFS
• On-chip regulator design
• Simulation analysis
• Summary & future work
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Fast DVFS w/ On-Chip 
Regulators

Questions to answer:
1.Does fast DVFS offer power savings?
2.For CMPs, do we want one global supply 

or per-core voltage control?
3.What does an on-chip regulator cost us?
4.How can architecture help regulator 

design?
5.How does this all add up?
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DVFS Overview
• Minimize energy consumption w/ bounded 

performance loss
– Exploit CPU slack from asynchronous memory 

events 
(i.e., L2 miss) to reduce frequency (F) and 
voltage (V)

• Offline DVFS control 
– Formulate as integer linear programming (ILP) 

optimization problem
– Oracle uses memory vs. CPU boundedness to 

set V/F across different windowed intervals
• 4 V/F settings assumed

– Compare different intervals (100ns to 100μs)
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DVFS Architecture Study

• Processor model
– 4 simple Xscale-like in-order cores
– Private L1, shared L2 

• Simulation framework
– SESC multi-core simulator
– Wattch power modeling
– Cacti cache simulator
– Orion
– MESI-based cache coherence
– Multithreaded and multi-programming 

benchmarks

Wei & Brooks IEEE Denver Chapter Technical Seminar (11/1/07) 16



Ocean’s DVFS Opportunities

• Multithreaded ocean running on all 4 cores exhibits 
variable activity between cores

• Per-core voltage again offers more DVFS 
opportunities
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fft’s DVFS Opportunities

• Multithreaded fft running on all 4 cores exhibits 
variable activity between cores

• Per-core voltage offers more DVFS opportunities
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Benefits of Fine-Grained DVFS

• Off-chip regulator 100μs – static (app-level) 
intervals
– OS-level DVFS control

• On-chip regulator 100ns – 1μs intervals
– Needs online DVFS control
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Global vs. Per-Core DVFS 
(multithreaded applications)

• DVFS interval = 100ns
• Per-core DVFS offers more savings 
• Savings vs. benchmark trend tracks “variability”
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Global vs. Per-Core DVFS 
(multi-programming applications)

• DVFS interval = 100ns
• mcf = memory-bound app; applu = CPU-bound app
• Power savings for mix of memory- and CPU-bound 

apps 
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Regulator Design

• Pdelivered = ½ LI2Fswitching
• On-chip multiphase 

buck converter
– Higher Fswitching
– Smaller L & C
– Lower Vripple and/or 

smaller filter C
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Power Delivery Options

• Can we leverage architecture to reduce the 
droop?

Wei & Brooks IEEE Denver Chapter Technical Seminar (11/1/07) 23

(x4 for per-core DVFS)



Current Staggering

• Burn power to reduce voltage droop
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Voltage Transition Overhead

• Scale up voltage before increasing frequency
• Drop frequency before decreasing voltage
• Power overhead = area between curves
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Regulator Specifications
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• Optimized Fswitching with 
respect to losses
– Balance DVFS 

overhead with regulator 
loss



Energy Breakdown Comparison
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Relative Energy Savings
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Putting It All Together
• Energy savings with fast DVFS offset by 

– On-chip regulator loss
– Voltage transition power overhead
– Current staggering overhead

• Per-core DVFS attractive for CMP systems
– Must consider scalability of on-chip regulators

• Next steps:
– Meeta is investigating fast DVFS scaling 

algorithms to leverage fast, fine-grained voltage 
switching

– Wonyoung is designing the regulator
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PROCESS VARIATION TOLERANT 
3T1D-BASED CACHE ARCHITECTURES

Seminar Part 2
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Process Variation

• As Moore’s Law continues and on-chip dimensions get smaller, 
imperfections in the fabrication process affect device performance 
more and more…

• Past: Worried about wafer-to-wafer, chip-to-chip variations
• Now: Worry about within-die, transistor-to-transistor variations 

(Source: K. Bernstein,IBM J.R&D’06)(Source: Friedberg, SPIE’06)



Variability Trends
• In the past…

• Now…

chip to chip core to core

block to block array to array

wafer to wafer

transistor to transistor



On-Chip Memory
• On-chip memory is a huge fraction of die 

area

Intel Core2Duo AMD Barcelona
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From ISSCC
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SRAM scaling: A Tale of Two Conferences?

• Is SRAM scaling slowing down?
• Plots include circuit techniques to improve reliability 

(e.g., dual voltage, boosted WL, etc.)

(http://www.chipworks.com/blogs.aspx?id=2706)

From IEDM



Problems with 6T

• Susceptibility to process variations (PV)
• Performance variations (Read/Write delay variations)
• Bit flips due to voltage noise and leakage
• Stuck at faults b/c too much mismatch
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Dealing with variability in memories
• Microarchitectural techniques

– Traditional ideas to deal with soft errors 
• Parity or ECC 
• Cache scrubbing

– PVT-induced soft errors much more frequent than radiation-
induced soft errors

• Must understand the system-level issues
• What’s the problem?

– Fighting or feedback 
• Sensitive to mismatch

Boosted array or wordline voltage?
– Bitline leakage

• Large variations in leakage currents
Shorter bitlines? 
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Data Usage in L1
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• On average, 90% of data accessed in first 6K cycles



Proposed Solution
• Use 3T1D dynamic cells to replace 6T cells

– W. K. Luk et al., “A 3-transistor dram cell with gated diode for 
enhanced speed and retention time,” Symp. on VLSI Circuits, 
June 2006.

• Why?
– Higher immunity to process variations
– Absorb delay variation into cell “retention time”
– No inherent fighting no bit flips
– Lower power (leakage and dynamic)
– Higher density possible

• But what about refresh?
– Use architectural insights and techniques to deal with dynamic 

data storage
• Where?

– Analyzed register files (RF) and L1 data caches
– eDRAMs being considered for L2 caches and above…
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What is a 3T1D cell?

• Gated-diode selectively 
boosts stored data (“1”) 
during reads

• Non-destructive reads allows 
for column multiplexing

T1 T2

T3

WLread

WLwrite

BLwrite
BLread

D1

storage node 
(nodeS)

WLread

transistor connected 
as gated diode



Retention Time vs. Access Time

• What retention time is “good enough”?
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Simulation Setup
• Baseline: 4-wide Out-of-order machine

– 20FO4 pipelines
– 80-entry RF
– 64KB, 4-way set-associative I- and D-caches

• sim-alpha simulator used to calculate 
instructions per cycle (IPC)

• 8 SPEC2000 benchmarks
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Variation Model
• Monte Carlo analysis of process variation 

impact on memory cell delay and power
– 32nm PTM, Vdd = 1V
– Considered typical and extreme PV scenarios
– Correlations based on Friedberg’s chip 

measurements
Typical Severe

σL/Lnominal (WID) 5% 7%

σVth/Vth (WID) 10% 15%

σL/Lnominal (D2D) 5% 5%



Cache Configuration
• 64KB cache

– 4-way Set Associative, 512b cache lines
– 2 Read/1 Write ports
– 8 256x256 subarrays
– 64 Sense Amps per subarray
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Cache Data Array Floorplan
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Global Refresh Scheme
• 8 cycles to refresh 

one cache line  
(SA-limited)

• 2K cycles to refresh 
entire cache (476ns 
@ 4.3GHz)

• ~6µs retention time 
(no variations)

• Refresh takes 8% 
of cache bandwidth

• IPC hit < 1%

refresh pulse 
generation 

refresh rate =
476.3n/retention 

time

cache refresh ID 
generation 

chip clock refresh pulse

insert refresh 
operation to 
cache array

L1 data cache array

block signal 
block one rd/wr 

port

to processor

to scheduler
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6T Performance under typical 
variations
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3T Performance under typical variations
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Three chips under severe 
variations
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Line-Level Schemes: Refresh 
Policies

• Refresh Policies
– Full-refresh: Per-line 

counter forces refresh 
when needed

– No-refresh: Rely on L2 
inclusion properties

– Partial-refresh: 
Threshold counter 
chooses one of the 
two policies
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Line-Level Schemes: Replacement 
Policies

• Replacement Policies
– Dead-sensitive Placement

• Avoid using “dead” lines when performing 
placement

– Retention-sensitive placement (RSP-FIFO)
• Order lines in descending retention time
• New lines are assigned the longest retention time 

line (and old ones reshuffle)
– Retention-sensitive placement (RSP-LRU)

• MRU block is assigned the longest retention time
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Evaluating Policies
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Pushing policies to the limits

1. 65nm, typical, 1.1V
2. 45nm, typical, 1.1V
3. 32nm, typical, 1.1V
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4. 32nm, severe, 1.1V
5. 32nm, typical, 0.9V
6. 32nm, severe, 0.9V



Power Analysis (Dynamic)
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• Refresh power is small (~10% overhead for better schemes)
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Power Analysis (Leakage)

T1 T2

T3

WLread

WLwrite

BLwrite

D1

weak leakage path

storage node 
(nodeS)

WLread

transistor connected 
as gated diode

• Substantial leakage savings
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Reliable Memory Summary
• Transient nature of data in L1 cache 

allows for architecturally-simple refresh 
schemes for 3T1D memories

• Provides PV-tolerant on-chip memories
– Comparable performance to “ideal” 6T
– Lower leakage power
– Low HW overhead

• Similar results observed for 3T1D register 
files and instruction caches

• Test chip planned for fab in Spring 2008
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