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— CMOS Transceiver Building Blocks
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— System-on-a-chip Integration
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SoC Trends: GSM (1995)

Stetzler et al, ISSCC 95 (AT&T)
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Integrated Transceiver with
external components (e.g. filters)
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SoC Trends:

SM (2006)
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SoC with integrated
transceiver and CPU.
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SoC Trends: WLAN (1996)
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SoC Trends: WLAN (2008)

Antennat ‘
| J2dcHz ]|
M Digita
HHSeramc =
Antenna2

L

PCl/PCle

Antenna Switch
1O Interface

<
"{j'

i
R

< II:'

Nathawad et al, ISSCC 08 (Atheros) 11a/b/g/n (2x2 MIMO) Radio SoC
IEEE Fort Collins, March 2008 - p 6

© D. Su, 2008




Advantages of SoC Integration

Qlncreased functionality
aSmaller Size / Form Factor

aLower Power
* On-chip interface

aLower Cost

» Single package

O Ease of use

* Minimum RF board tuning

* Reduced component count
- Improved reliability

IEEE Fort Collins, March 2008 - p 7
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Cost of WLAN Data Throughput
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CMOS RF Design

Advantages
* Low-cost, high-yield
* Multi-layer interconnect makes decent
inductors
* High-level of integration supports
sophisticated digital signal processing

Challenges:
* Multi-GHz: narrowband design with inductors
* No high-Q BPF: architecture + dynamic range
* Process/Temp Variation: DSP algorithms
* Reduced supply headroom: IO devices
* Noise coupling: careful design & layout
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CMOS Transceiver Building Blocks

a Signal Amplification
QFrequency Translation

QFrequency Selectivity

IEEE Fort Collins, March 2008 - p 10 © D. Su, 2008




Transceiver Block Diagram
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Tuned CMOS RF Gain stage
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Low power design:

* high Q
* smaller feature size technology: gm, Vy,
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LNA Design Goal

OLow Noise Figure
— Sufficient gain

OAble to accommodate large blockers
—Large Dynamic Range
—Large Common-mode Rejection
— High Linearity
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LNA with Switchable Gain
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* CMRR at RF
» Switchable gain for high DR

Zargari et al, JSSC Dec 2004 (Atheros)
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LNA with GM Linearization

Single-ended
equivalent

——o RFour

Bias1l

RFin E'L"—_— M1 Nonlinearity
I | Compensation
| o m2 p
_ B with two parallel
Bias2 ﬁ transistors

Kim et al, JSSC Jan 2004 (KAIST)

IEEE Fort Collins, March 2008 - p 16 © D. Su, 2008




CMOS Power Amplifiers

a Output power (and efficiency) depends on

Voo )
b VoD

OUt_Z_RL

O Lower supply voltage reduces output
power
—> Cascoding (to support a higher Vyp)
-> Parallel Combining (of lower power PAS)
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Cascoded Power Amplifier
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Cascoded Power Amplifiers
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Power Amplifiers with Parallel
Amplification
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Power Amplifiers with Parallel

AmEIification
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Power Amplifiers with Parallel
Amplification
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Power Amplifiers with Parallel

AmEIification
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PA Peak to Average Ratio

Q Improved spectral efficiency (higher bits per Hz)
- Large peak to average ratio
- reduces power efficiency of the PA

a Example: 802.11a/g OFDM has PAR of 17dB
— Class A efficiency of ~ 1%
— Infrequent signal peaks
* 16-QAM OFDM, PAR of 6dB degrades SNR by
only 0.25dB*
- Class A Efficiency ~ 12%
* 64-QAM OFDM, PAR of 12dB is needed
- Class A Efficiency ~ 3%

*Van Nee & Prasad, OFDM for Wireless Multimedia Communications, Artech House, 2000
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Power Amplifiers with Dynamic Bias
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Power Amplifiers with Dynamic Bias
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Polar Modulated Power Amplifier
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Digitally Modulated
Polar Power Amplifier
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Digitally Modulated
Polar Class-A Power Amplifier
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Frequency Translation

O RF €- Baseband

QArchitecture:
— Superhetrodyne
— Sliding IF, low IF, Direct Conversion
o Components:
— Mixers:
» Active or Passive (lower power)
— Local Oscillator:
* Frequency Synthesizer

IEEE Fort Collins, March 2008 - p 30 © D. Su, 2008
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Active CMOS mixer
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Passive CMOS Mixer
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Frequency Synthesizer
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Voltage Controlled Oscillator
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Measured Phase Noise
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Frequency Selectivity

O Superhetrodyne conversion
— IF filtering:
» external SAW filter expensive
* On-chip RF/IF high-Q filtering difficult

aDirect conversion

— Baseband filtering:
» Modest filtering to avoid anti-aliasing
» Blocker filtering in digital domain

IEEE Fort Collins, March 2008 - p 36
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Anti-alias Low-pass gm-C Filter
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System-on-a-Chip Integration

O Digital Power Consumption
O Digital Calibration techniques
O Noise Coupling

IEEE Fort Collins, March 2008 - p 38 © D. Su, 2008
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Digital Power Consumption

a Digital circuits (PHY, MAC, CPU, 10O,
memory) occupies most of the area of a
wireless SoC:

0 Reducing active digital power
— Lower supply voltage
— Lower interconnect capacitance
— Small geometry CMOS
— Clock gating of inactive digital logic

IEEE Fort Collins, March 2008 - p 39
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Digital Leakage Power

Q Transistor leakage current has increased
dramatically with technology scaling

Q Leakage current reduction
— Customized low-power (LP) process
— Circuit techniques:
» Transistor stacking
* Multiple threshold voltages

* Dynamically adjusted threshold (backgate bias)

» Multiple supply voltages
* Dynamically adjusted supply voltages

IEEE Fort Collins, March 2008 - p 40
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Digital Calibration Issues

a Digital logic to compensate/correct for imperfections
of analog and RF circuits can enable:
— Lower power, smaller area, improved reliability of
analog/RF

Q Desired properties of calibration:
— Independent of temperature, aging, frequency
— Inexpensive (in area and power) to implement
— Do not interfere with system performance

a Wireless SoC advantage:
— Calibration building blocks already exist on-chip:
transmitter and receiver, data converters, and CPU
— No package pin limitation

IEEE Fort Collins, March 2008 - p 41 © D. Su, 2008

Calibration Techniques

O Test Signal
— Rx Gain: Thermal noise
— Rx I/Q mismatch: Live Rx traffic
— Tx carrier leak: Dedicated test signals from DAC
— Receive filter bandwidth: RF loop back

O Observation Signal
— ADC outputs
— Comparator outputs

O Tuning Mechanism
— Dedicated DAC
— Selectable capacitors, resistors, transistors

IEEE Fort Collins, March 2008 - p 42 © D. Su, 2008
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Example: Tx Carrier Leak
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Noise Coupling
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Digital Noise Source

AQReduce noise by turning off unused
digital logic

AClock gating
QAvoid oversized digital buffers

QStagger digital switching

— Avoid large number of digital pads
switching simultaneously

— Avoid switching digital logic at the

same sampling instance of sensitive
analog

IEEE Fort Collins, March 2008 - p 45 © D. Su, 2008

Noise Coupling Mechanism

Q Supply noise coupling
— Separate or star-connected power supplies

QO Capacitive coupling to sensitive signals and
bias voltages

— Careful routing of signal traces to reduce parasitic
capacitance

— Use ground return-path shields
0 Substrate coupling induced V;; modulation

— Low-impedance substrate connection
— Guard rings

— Physical separation
— Deep Nwell

IEEE Fort Collins, March 2008 - p 46 © D. Su, 2008




Noise Destination

Q Increase immunity of sensitive analog and
RF circuits

— Fully differential topology
0 Dedicated on-chip voltage regulators

O Avoid package coupling by keeping
sensitive nodes on chip
(Example: VCO control voltage)

IEEE Fort Collins, March 2008 - p 47
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Conclusions

0 CMOS has become the technology of
choice for integrated radio systems

Q Integrating a radio in mixed-Signal
System-on-a-Chip is no longer a dream
but a reality

Q Wireless SoC can provide significant
advantages in size, power, and cost

IEEE Fort Collins, March 2008 - p 48
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Continuing Challenges

O Wireless SoCs with integrated radios will
be as ubiquitous as today’s mixed-signal
SoCs with integrated ADC

QO Multi-mode radios to support several
wireless standards

a Challenge of radio designers will still be:
— Power consumption / Battery life
— Range
— Data rate
— Cost

IEEE Fort Collins, March 2008 - p 49
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