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SoC Trends: GSM (1995)

Stetzler et al, ISSCC 95 (AT&T) Integrated Transceiver with 
external components (e.g. filters) 
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SoC with integrated 
transceiver and CPU.

SoC Trends: GSM (2006)

Bonnaud et al, ISSCC 06 (Infineon)
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SoC Trends: WLAN (1996)

Prism WLAN chipset (Harris Semi) AMD App Note (www.amd.com)

Multi-Chip 802.11b Transceiver

IEEE Fort Collins, March 2008 - p 6 © D. Su, 2008

11a/b/g/n (2x2 MIMO) Radio SoC

SoC Trends: WLAN (2008)

Nathawad et al, ISSCC 08 (Atheros)
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Advantages of SoC Integration

Increased functionality
Smaller Size / Form Factor
Lower Power 

• On-chip interface
Lower Cost

• Single package
Ease of use

• Minimum RF board tuning
• Reduced component count 

Improved reliability
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Cost of WLAN Data Throughput

Zargari, 2007 VLSI Symposium Short Course
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CMOS RF Design

Advantages
• Low-cost, high-yield
• Multi-layer interconnect makes decent

inductors
• High-level of integration supports 

sophisticated digital signal processing
Challenges:

• Multi-GHz:  narrowband design with inductors
• No high-Q BPF: architecture + dynamic range
• Process/Temp Variation: DSP algorithms
• Reduced supply headroom: IO devices
• Noise coupling: careful design & layout
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CMOS Transceiver Building Blocks

Signal Amplification

Frequency Translation

Frequency Selectivity
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Transceiver Block Diagram
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Tuned CMOS RF Gain stage

Low power design: 
• high Q
• smaller feature size technology: gm, VDD
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LNA Design Goal

Low Noise Figure
– Sufficient gain 

Able to accommodate large blockers
– Large Dynamic Range
– Large Common-mode Rejection
– High Linearity
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LNA with Cascoded Diff Pair

• Input match
• Noise Figure

BIAS

IN IN
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Zargari et al, JSSC Dec 2004 (Atheros)

LNA with Switchable Gain

• CMRR at RF
• Switchable gain for high DRBIAS

IN IN

gain

M1 M4

gain

gain

M2 M3
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LNA with GM Linearization

Kim et al, JSSC Jan 2004 (KAIST)

RFIN

RFOUT

Bias1

M1 Nonlinearity 
Compensation 
with two parallel 
transistorsBias2

M2

Single-ended 
equivalent
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Output power (and efficiency) depends on 
VDD

Lower supply voltage reduces output 
power

Cascoding (to support a higher VDD)
Parallel Combining (of lower power PAs)

CMOS Power Amplifiers

Pout
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Cascoded Power Amplifier

Cascoding advantages
3.3V supply voltage
Stability

Capacitive Level-shift
Differential

Off-chip balun

RFIN

RFOUT

Bias

M2

Single-ended 
equivalent

M1

L1 L2
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Cascoded Power Amplifiers

Zargari et al, JSSC Dec 2002 (Atheros)

RFINRFIN

Bias1Bias1

RFOUT

Bias2

RFOUT

Bias2

PMAX = 22 dBm POFDM = 17.8 dBm (BPSK)
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IN OUT
PA

λ/4

LoadSmall

Large

Power Amplifiers with Parallel 
Amplification



11

IEEE Fort Collins, March 2008 - p 21 © D. Su, 2008

Power Amplifiers with Parallel 
Amplification

IN OUT
PA Off

λ/4

LoadSmall

Large
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Shirvani et al, JSSC June 2002 (Stanford)

IN OUT
PA2

λ/4

LoadPA3 λ/4

PA1
λ/4

Power Amplifiers with Parallel 
Amplification
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Shirvani et al, JSSC June 2002 (Stanford)

Power Amplifiers with Parallel 
Amplification
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PA Peak to Average Ratio
Improved spectral efficiency (higher bits per Hz)

Large peak to average ratio
reduces power efficiency of the PA

Example: 802.11a/g OFDM has PAR of 17dB
– Class A efficiency of ~ 1%
– Infrequent signal peaks

• 16-QAM OFDM, PAR of 6dB degrades SNR by 
only 0.25dB*

Class A Efficiency ~ 12%
• 64-QAM OFDM, PAR of 12dB is needed

Class A Efficiency ~ 3%

* Van Nee & Prasad, OFDM for Wireless Multimedia Communications, Artech House, 2000
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Zargari et al, JSSC Dec 2004 (Atheros)

IN OUT

Predrivers PA

64-QAM OFDM  
Efficiency ~ 10%

1/α

Bias

Power Amplifiers with Dynamic Bias
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Zargari et al, JSSC Dec 2004 (Atheros)

Power Amplifiers with Dynamic Bias
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Polar Modulated Power Amplifier
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RF

RF Power Amplifier

RF Output

Magnitude

Phase
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Digitally Modulated 
Polar Power Amplifier

I/Q to 
Polar

I
Q

Decoder

Phase

Magnitude

6
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Kavousian et al, ISSC 2007 (Stanford)
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Kavousian et al, ISSC 2007 (Stanford)

Digitally Modulated 
Polar Class-A Power Amplifier

RFOUT

M1

L2

M2 M64
Phase

Ctrl1 Ctrl2 Ctrl64

Matching
Network

• Bandwidth: 20MHz
• Frequency: 1.6GHz
• EVM: -26.8dB
• Power: 13.6dBm
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Frequency Translation

RF Baseband
Architecture:
– Superhetrodyne 
– Sliding IF, low IF, Direct Conversion

Components:
– Mixers: 

• Active or Passive (lower power)
– Local Oscillator: 

• Frequency Synthesizer
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Active CMOS mixer

Brandolini et al, ISSCC 2005 (Univ of Pavia)
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LO LO
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Baseband Output
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Passive CMOS Mixer

Mehta et al, ISSCC 2006 (Atheros)
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Frequency Synthesizer

Terrovitis et al, ISSCC 2004 (Atheros)
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Analog Control

Voltage Controlled Oscillator

Terrovitis et al, ISSCC 2004 (Atheros)

Digital Control

Regulated VDD



18

IEEE Fort Collins, March 2008 - p 35 © D. Su, 2008

Terrovitis et al, ISSCC 2004 (Atheros)

Measured Phase Noise
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Frequency Selectivity

Superhetrodyne conversion
– IF filtering: 

• external SAW filter expensive
• On-chip RF/IF high-Q filtering difficult

Direct conversion
– Baseband filtering:

• Modest filtering to avoid anti-aliasing
• Blocker filtering in digital domain
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Anti-alias Low-pass gm-C Filter

Zargari et al, JSSC Dec 2004
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System-on-a-Chip Integration

Digital Power Consumption
Digital Calibration techniques
Noise Coupling

Analog/RF

DIGITAL
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Digital Power Consumption

Digital circuits (PHY, MAC, CPU, IO, 
memory) occupies most of the area of a 
wireless SoC: 

Reducing active digital power
– Lower supply voltage
– Lower interconnect capacitance
– Small geometry CMOS
– Clock gating of inactive digital logic
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Digital Leakage Power
Transistor leakage current has increased 
dramatically with technology scaling
Leakage current reduction
– Customized low-power (LP) process
– Circuit techniques:

• Transistor stacking
• Multiple threshold voltages
• Dynamically adjusted threshold (backgate bias)
• Multiple supply voltages
• Dynamically adjusted supply voltages
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Digital Calibration Issues
Digital logic to compensate/correct for imperfections 
of analog and RF circuits can enable:
– Lower power, smaller area, improved reliability of 

analog/RF

Desired properties of calibration: 
– Independent of temperature, aging, frequency
– Inexpensive (in area and power) to implement
– Do not interfere with system performance

Wireless SoC advantage:
– Calibration building blocks already exist on-chip: 

transmitter and receiver, data converters, and CPU
– No package pin limitation
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Calibration Techniques
Test Signal
– Rx Gain: Thermal noise
– Rx I/Q mismatch: Live Rx traffic
– Tx carrier leak: Dedicated test signals from DAC
– Receive filter bandwidth: RF loop back

Observation Signal
– ADC outputs
– Comparator outputs

Tuning Mechanism
– Dedicated DAC
– Selectable capacitors, resistors, transistors
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Example: Tx Carrier Leak

Test signal: Tx DAC
Observation signal: RF loop back to Rx ADC
Tuning: Carrier Leak Correction at Tx DAC input
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Digital
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TX

RX 
Offset Adj

RX

IEEE Fort Collins, March 2008 - p 44 © D. Su, 2008

Noise Coupling
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Digital Noise Source

Reduce noise by turning off unused 
digital logic
Clock gating
Avoid oversized digital buffers
Stagger digital switching
– Avoid large number of digital pads 

switching simultaneously
– Avoid switching digital logic at the 

same sampling instance of sensitive 
analog
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Noise Coupling Mechanism

Supply noise coupling
– Separate or star-connected power supplies

Capacitive coupling to sensitive signals and 
bias voltages
– Careful routing of signal traces to reduce parasitic 

capacitance
– Use ground return-path shields

Substrate coupling induced VTH modulation
– Low-impedance substrate connection
– Guard rings
– Physical separation
– Deep Nwell
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Noise Destination

Increase immunity of sensitive analog and 
RF circuits
– Fully differential topology

Dedicated on-chip voltage regulators

Avoid package coupling by keeping 
sensitive nodes on chip 
(Example:  VCO control voltage)
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Conclusions
CMOS has become the technology of 
choice for integrated radio systems

Integrating a radio in mixed-Signal 
System-on-a-Chip is no longer a dream 
but a reality

Wireless SoC can provide significant 
advantages in size, power, and cost
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Continuing Challenges

Wireless SoCs with integrated radios will 
be as ubiquitous as today’s mixed-signal 
SoCs with integrated ADC
Multi-mode radios to support several 
wireless standards
Challenge of radio designers will still be:
– Power consumption / Battery life
– Range 
– Data rate
– Cost
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