Scaling of RF CMOS

S. Simon Wong

Electrical Engineering Department, Stanford University

802.11 Evolution

p. 564, 2007.

Source : Mehta, et al., "An 802.11g WLAN SOC, " ISSCC, p. 94, 2005.

ADC

BIAS

MAC

- For Digital Applications
 Motivations Faster; Lower cost/Hz-bit-function
- For RF Applications
 Spectra (1-6GHz) do not change; Are faster devices needed ?

Motivations – Smaller; Lower cost/function; Lower Power

Outline

- Transistor Scaling
- Passive Components
- Future Integration Trends
- Conclusions

Sample RF Circuits

Extensive usage of inductor to tune out capacitance

MOSFET Frequency Response

$$\begin{split} f_t = & \frac{1}{2\pi} \frac{g_m}{c_{\rm gg} + c_{\rm gso} + c_{\rm gdo} + c_{\rm par}} \to \frac{1}{2\pi} \frac{v_{\rm sat}}{L_g} \\ f_{\rm max} \approx & \frac{f_t}{2\sqrt{(R_g + R_i)(g_{\rm ds} + 2\pi f_t c_{\rm gdo})}} \end{split}$$

 $g_m = transconductance$

 C_{qq} = gate-channel capacitance

 C_{gdo} = gate-drain overlap capacitance

 C_{gso} = gate-source overlap capacitance

 \tilde{C}_{par} = gate parasitic capacitance

 V_{sat} = carrier saturation velocity

 L_{a} = effective gate length

 $\ddot{R_a}$ = gate resistance

 $R_i =$ equivalent input resistance for non-quasi static effect

 g_{ds} = output conductance

MOSFET f_T

$f_T >> typical RF spectra$

Source : Diaz, et al., "CMOS Technology for MS/RF SoC," IEEE TED, 50, p. 557, 2003.

Effect of Layout on f_T and f_{max}

Optimum Finger Width

E. Morifuji, et al., "Future Perspective and Scaling Down Roadmap for RF CMOS," *Symposium on VLSI Technolo gy Digest of Technical Paper*, pp. 163-164, 1999.

L. Tiemeijer, et al., "Record RF Performance of Standard 90 nm CMOS Technology," *IEEE International Electron Device Meeting*, pp. 441-444, 2004.

Optimum Finger Width

f_{max} depends on finger width.

E. Morifuji, et al., "Future Perspective and Scaling Down Roadmap for RF CMOS," *Symposium on VLSI Technolo gy Digest of Technical Paper*, pp. 163-164, 1999.

L. Tiemeijer, et al., "Record RF Performance of Standard 90 nm CMOS Technology," *IEEE International Electron Device Meeting*, pp. 441-444, 2004.

Dependence of f_T on Bias Current

f_{T} depends on $I_{DS}.$ I_{DS} can be reduced for similar f_{T} with scaled technology.

P. Woerlee, et al., "RF CMOS Performance Trends," *IEEE Transactions on Electron Devices*, Vol. 48, pp. 1776-17 82, August 2001.

MOSFET Noise Model

Source : A. Scholten, et al., "Noise Modeling for RF CMOS Circuit Simulation," *IEEE Transactions on Electron Devices*, Vol. 50, pp. 618-632, March 2003.

Drain Thermal Noise

Drain current noise is dominated by thermal noise at high f. γ models the excessive noise observed in short L devices. The excessive noise is believed to be due to substrate noise.

Induced Gate Noise

Gate noise induced by drain thermal noise is only a portion of the total noise.

 β models the excessive noise observed in short L devices.

Noise Figure

• Noises due to parasitic resistances associated with drain, source, bulk and especially gate need to be accounted for.

• Other noise sources, such as short noise due to gate leakage and avalanche noise at high V_{DS} , are usually insignificant.

• Noise figure describes the noise performance of a circuit.

• Noise figure depends on the source impedance matching. When Z_s is low, v_n dominates. When Z_s is high, i_n dominates.

Noise Figure

- For typical common source type LNA,
 NF ~ 1+ K f / f_T, NF improves with scaled technology.
- In practice, it is very difficulty to achieve the minimum NF because of other constraints.

Noise Figure versus Bias Current

NF depends on f_T , and hence I_{DS} . I_{DS} can be reduced for similar NF with scaled technology.

P. Woerlee, et al., "RF CMOS Performance Trends," *IEEE Transactions on Electron Devices*, Vol. 48, pp. 1776-17 82, August 2001.

Drain 1/f Noise

Drain current noise is dominated by1/f noise at low f.

Although not critical for LNA, very important for VCO, A/D

$$S_{id} = K gm^2 / W L C_{ox}^2 f$$

Degradation of 1/f Noise

Source : Mercha, et al., "Impact of Scaling on Analog/RF CMOS Performance," International Conference on Solid State and Integrated Circuits Technology Proceedings, paper A3.2, 2004.

Characteristics of Scaled MOSFET

Process	0.25 μ m (`98)	0.18 μ m (`00)	0.13 μ m (՝02)	90 nm ('04)
V _{dd} (V)	2.5 (1x)	1.8 (0.7x)	1.2 (0.5x)	1.0 (0.4x)
I _{dsat} (μΑ/μm)	600 (1x)	600 (1x)	550 (1x)	850 (1.4x)
l _{off} (nA/μm)	0.01 (1x)	0.02 (2x)	0.32 (32x)	7 (700x)
I _{gate} (nA/μm)	2.5e-5 (1x)	1.8e-3 (100x)	0.65 (5e4)	6.3 (70000x)
I _{on} /I _{off} (10e6)	60 (1x)	30 (0.5x)	1.7 (0.03x)	0.12 (0.002x)
ց_m (mS/µm)	0.3 (1x)	0.4 (1.3x)	0.6 (2x)	1.0 (3.3x)
g_{ds} (µS/µm)	7.7 (1x)	15 (2x)	42 (5.4x)	100 (13x)
g _m / g _{ds}	39 (1x)	27 (0.7x)	14 (0.36x)	10 (0.26x)
f _T (GHz)	30 (1x)	60 (2x)	80 (2.7x)	140 (4.7x)
Delay (ps/gate)	45 (1x)	30 (0.7x)	15 (0.3x)	11 (0.24x)
C _g (fF/gate)	0.47 (1x)	0.35 (0.7x)	0.25 (0.5x)	0.16 (0.34x)
C _j (fF/gate)	0.83 (1x)	0.80 (1x)	0.88 (1.1x)	0.66 (0.8x)

Linearity of MOSFET

Source : C. Diaz, D, Tang and J. Sun, "CMOS Technology for MS/RF SoC," *IEEE Transactions on Electron Devices*, Vol. 50, pp. 557-566, March 2003.

Effect of Non-Linearity

Sample RF Circuits

High voltage required for the cascode transistor.

Distributed Power Amplifier

I. Aoki, et al., "Fully Integrated CMOS Power Amplifier Design Using the Distributed Active Transforme r Architecture," *IEEE Journal of Solid State Circuits*, Vol. 37, pp. 371 -383, March 2002.

Power Combining

A. Shirvani, et al., "A CMOS RF Amplifier with Parallel Amplification for Efficient Power Control," *IEEE Journal of Solid State Circuits*, Vol. 37, pp. 684 -693, June 2002.

Typical RF Transceiver

MOSFET-Based T/R Switch

Solution :

Bias the gate through a resistor – allows the gate to be bootstrapped with incoming signal – improve linearity Bias the substrate through a L-C tank – allows the substrate to be bootstrapped with incoming signal, Linearity is greatly improved.

N. Talwalkar, et al., "Integrated CMOS Transmit-Receive Switch Using L-C Tuned Substrate Bias for 2.4-GHz and 5.2-GHz Applications," *IEEE Journal of Solid State Circuits*, Vol. 39, pp. 863 -870, June 2004.

Switch Linearity

Outline

- Transistor Scaling
- Passive Components
- Future Integration Trends
- Conclusions

Capacitor Options

0

	Metal Thickness (µm)	Metal Space (µm)	Dielectric Thickness (µm)	Approx K
250 nm	0.6	0.4	1	4.1
180 nm	0.5	0.3	0.8	3.8
130 nm	0.4	0.2	0.5	3.8
90 nm	0.3	0.15	0.3	3.2

Capacitor Performance

3D Capacitor

D. Kim, etal., "Symmetric Vertical Parallel Plate Capacitors for On-Chip RF Circuits in 65-nm SOI Technology," *IEEE Electron Device Letters*, pp. 616-618, July 2007.

Varactor Options

MOS accumulation mode varactor offers higher C/Area, more tuning range, comparable Q, and less temp sensitivity.

C. Chen, et al., "A 90nm CMOS MS/RF Based Foundry SOC Technology Comprising Superb 185 GHz fT RFMOS and Versatile, High-Q Passive Components for Cost/Performance Optimization," *IEEE International Electron Devices Meeting*, pp. 39-42, 2003.

On-Chip Spiral Inductor

C. Yue and S. Wong, "Physical Modeling of Spiral Inductors on Silicon," *IEEE Transactions on Electron Devices*, Vol. 47, pp. 560-568, March 2000.

Quality Factor

Substrate Loss due to E-field Penetration

Ground Shield to Stop E-field Penetration

 Lenz's Law: Induced eddy currents with opposing magnetic field

Patterned Ground Shield

- Patterned Ground Shield
- Inserted between the inductor and substrate
- PGS fingers orthogonal to spiral for form a "star" shape
- No interference with the inductor magnetic field
- Use silicided polysilicon with Metal1 strap for low resistance path to ground.

C. Yue and S. Wong, "On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC's," *IEEE Journal of Solid State Circuits*, Vol. 33, pp. 743-752, May 1998.

Comparison of Back End Technology

	Metal Layers	Top Metal Thickness (μm)	Top Metal to Sub (μm)	M5 to Sub (μm)	Approx K
250 nm	5	1 AI	7.5	7.5	4
180 nm	6	1 AI	8	6.5	3.8
130 nm	8	0.9 Cu	7	4	3.8
90 nm	9	0.85 Cu	7	3	3.2

Optimized Inductor Q

Outline

- Transistor Scaling
- Passive Components
- Future Integration Trends
- Conclusions

Integration of Off-Chip Components

Significant reduction in system cost

Chip Comparison

 RF Frontend 2
 C OVD / ODV

 Synth
 Proveseling

 BB PLL
 Baseband

 Baseband
 Digital PHY, MAC

 ADC / DAC 1
 Baseband

11 11/11

130nm 802.11n 2X2

180nm 802.11abg

Chip Comparison

90nm GSM

130nm GSM

Chip Comparison

130nm WLAN 2X2 N

130nm GSM

Radio Scaling

Radio Scaling

Conclusions

 Scaled CMOS should improve NF and reduce power consumption; reduction in linearity and voltage capability complicates the design

 Advanced technology offers more options for passive components; quality of passive components may be compromised if not all metal layers are used

Further Integration of off-chip components to reduce system cost

Technology selection will depend on analog/digital mix

 Chip with mostly RF functions will scale moderately with technology

Chip with largely digital functions will scale with technology

-Advanced technology my benefit the integration of multiple radios