Compact Modeling and Simulation of PD-SOI MOSFETs: Current Status and Challenges

Jung-Suk Goo¹, Richard Q. Williams², Glenn O. Workman³, Qiang Chen⁴, Sungjae Lee², and Edward J. Nowak²

¹Technology Development Group, Advanced Micro Devices Inc.
²SOI Compact Modeling Group, IBM Corporation
³CMOS Next Generation Design Foundations, Freescale Semiconductor Inc.
⁴Was with AMD Inc., now with Synopsys Inc.

Outline

- Overview of the PD-SOI CMOS Technology
- Self-heating
- Model Parameter Calibration Flow
- Challenges in Measurement and Calibration
- Floating-Body Effects Modeling: History-Effect
- Body-Contacted Device Modeling
- Floating-Body Effects Simulation Issues
- Model Standardization
- Conclusion

History of Manufacturing PD-SOI

Successfully manufactured in ULSI from the 225 nm through the 45 nm nodes

0.2um 64b PowerPC µProcessor

45 nm 2GHz eDRAM

1999 ISSCC by D. H. Allen et al.

2008 VLSI Symp. by P. Klim et al.

Benefits of PD-SOI CMOS

- Higher performance and lower power
 - Dynamic threshold (V_t) lowering
 - Reduced capacitive loading
 - Reduced body effects in stack transistor circuits
- Better control
 - Reduced V_t versus L_{gate} sensitivity
 - Elimination of well-implant proximity effects (WPE)
 - Natural isolation of auxiliary device elements (embedded DRAM, passives, high-voltage, and RF devices)
- Better reliability
 - Reduced soft-error rates
 - Elimination of latch-up

Bulk CMOS vs. PD-SOI CMOS

- The chief difference of the PD-SOI is that the body of each SOI transistor is an independent 4th terminal for the device
- When absolutely needed, the body can be fixed to a chosen potential with a body tie

• However, in 99.9% of the chip, transistors will be operating as floating body devices

Self-Heating: DC R_{th} Measurement

Self-Heating Removal

- Based on measured temperature dependence of the current
 - Linear
 - Quadratic
 - Exponential

Self-Heating during Simulation

- Addition of temperature node leads to simulation time increase, and, possibly, convergence issue
- Can disable self-heating mode for many high-performance logic products
 - Switching time is much faster than the thermal time constant
 - Most analog blocks are operating at low enough bias range

PD-SOI Model Parameter Calibration

Do History-Effect Modeling First!

- Intrinsic MOSFET characteristics have only small impact on history effect
 - Except for the body-effect
- Adjusting parasitic characteristics have huge impact on history effect and cause noticeable change in channel current

Challenges in Measurement & Calibration

usion

Parasitic Opposite-Type Gate

- Big discrepancy in I_{gb} characteristic due to the parasitic
 - Especially in inversion region
- Solutions:
 - Selectively use specific regions
 - Use bulk wafer

- Body bias can cause a fully-depleted body DBS1
- Low-doped bridge region can introduce artifacts in measured data
- Solutions:
 - Selectively use specific regions
 - Emphasize intrinsic response

DBS1 I cannot change this graphic image, but it should not be hyphenated because the ly in fully = the hyphen in this use David B. Schlosser, 9/13/2008

Implicit Calibration using RF Data

- RF measurement offers much implicit information:
 - Self-heating response time
 - Impact ionization
 - Body-contact time constant

What Causes Floating-Body Effect?

- Body potential is a function of:
 - Capacitive coupling to
 - Source
 - Drain
 - Gate
 - Substrate (small)
 - Diode leakages to
 - Source
 - Drain
 - Gate leakage
 - Impact ionization
- Also subject to the previous switching history

CMOS Inverter Operation

Definition of History-Effect

Definition of History-Effect

- 1st switch : input transition after being held constant for a long time
- 2nd switch: input transition short time after the 1st switch

18 | IEEE SSC Society Fort Collins Chapter | Nov 10, 2008

Typical History-Effect

Pulse Compression vs. Expansion

20 | IEEE SSC Society Fort Collins Chapter | Nov 10, 2008

fusion

Impact of Loading on History-Effect

Unloaded

Heavily Loaded

- Very limited impact of loading capacitance
 - Extremely large loading (100fF) -- changing switching delay by ~15X
 - Only changes ~2% in history-effect

Combined Capacitive/Resistive Network

Time for Actual Contribution to Speed

- 1st SW : Initial DC
- 2nd SW : Initial DC + Capacitive Coupling

Capacitive Coupling

usion

Capacitive coupling is stronger to drain than to gate

24 | IEEE SSC Society Fort Collins Chapter | Nov 10, 2008

Key Components (Initial DC Condition)

- 1st SW Initial
 - KCL balance between forward and (reverse I_{diode}+I_{GIDL}+I_{I/I})
 - Accumulation I_{gb} is much smaller than forward I_{diode}
- 2nd SW Initial
 - KCL balance between forward I_{diode}*2 and inversion I_{gb}

Key Components (Capacitive Coupling)

- Basically a voltage-divider that consists of
 - Gate-body capacitance, and
 - Junction capacitance

Key Components (Body-Effect)

- Body potential is established mostly by diode and gate characteristics (DC and AC)
- This body potential is translated into the actual switching performance by the body-effect (the main transfer function)

Impact of Gate Capacitance & Current

 $\Delta V_{b,2nd}$

 $=V_{DD_{i}}$

 $C_{\underline{db}}$

 $\overline{C_{sb} + C_{db}}$

The future is fusion

• C_{gb} is critical for V_{DD} dependence slope

I_{gb} became a major factor from 90 nm technology onward

Impact of Diode Current

- The diode current characteristic is the key characteristic dominating the V_{DD} and temperature dependences of the history-effect
 - Proportional to forward I_{diode}
 - Inversely proportional to reverse I_{diode}

Final Reproduction of History-Effect

 The measured history-effect can be successfully reproduced across a wide range of conditions when all the key components are properly modeled

Other Floating Body Effects: Parasitic BJT

31 | IEEE SSC Society Fort Collins Chapter | Nov 10, 2008

2007 CICC by W. Wu *et* AMD The future is fusion

Challenges: Statistical Modeling

- Single-stage logic gate measurement
 - Requires very high-accuracy test equipment
 - Extremely low throughput
- Delay chain measurement
 - Averaged over all stages, loosing variation details
 - Large area
- In-line characterization
 - Approximate precision

Back-Bias Range of Interest

- Sometimes the body effect is not able to fit for the entire range
- Then some range should be compromised
- Separating body-contacted and floating-body models maybe more desirable

Can Body Be Really Tied?

- Body-contacted PD-SOI circuit experiences the coupling effects exactly same as floating-body one
- Thus, it also exhibits history effect

35 | IEEE SSC Society Fort Collins Chapter | Nov 10, 2008

36 | IEEE SSC Society Fort Collins Chapter | Nov 10, 2008

- The charge ratio is 0.2 ~ 0.5 within practical range
 - 2 ~ 5x overestimation
- Its impact of switching delay is not negligible

38 | IEEE SSC Society Fort Collins Chapter | Nov 10, 2008

Bias Dependence of Body Resistance

Courtesy of Alvin Loke et al.

Body resistance is determined by majority carriers in the neutral region

39 | IEEE SSC Society Fort Collins Chapter | Nov 10, 2008

Bias Dependence of Body Resistance

2007 CICC by W. Wu et al.

- Bias significantly modulates the depletion region; in turn, body resistance
 - Not captured in BSIMSOI
 - Well captured in PSP-SOI

Body-Contact: Distributed Body R

Body-Contact: Distributed Body R

Rule of Thumb

- Factor of 1/3 for single-side contact; 1/12 for double-side contact
- Mathematically derived for gate resistance noise
 - A. B. Philips, BJT Base Resistance (McGraw-Hill, 1962)
 - R. P. Jinal, MOSFET Gate Resistance (IEEE T-ED, pp. 1505-1509, October 1984)
- Applicable for other distributed resistance associated with active gain

42 | IEEE SSC Society Fort Collins Chapter | Nov 10, 2008

PD-SOI Circuit Simulation: Accuracy

Accuracy options

- $\Delta V_{body} \leq V_{DD} \rightarrow$ needs higher accuracy in voltage convergence criteria (*vntol*, etc.)
- I_{body} << I_{DS} → needs tighter control on off-conductance of capacitors (gmindc)
- Stronger sensitivity of diode currents at low temperature → needs special attention on numerical convergence criteria

PD-SOI Circuit Simulation: Time

- Harmonic balance
 - Solves Fourier series in *f*-domain
 - Requires over-sampling and sufficient harmonics
- Periodic steady state
 - Projects the evolution of the net body charges using the Newton method
- Indirect body initialization technique
 - .ic $v(n) = V_{DD}/2$
- Transient HB
 - Speed up by orders in magnitude

- Charging/discharging
 - Circuits in sleep and wake-up modes
- Steady-state
 - Critical for larger multi-input circuits, SRAMs, clock drivers, I/O, PLL, etc.
 - Takes μ s~ms \rightarrow impractically long

Model Standardization

- Compact Modeling Council (CMC)
 - Hosted by the Government Electronics and Information Association (GEIA)
 - Evaluates fundamental physics and numerical properties
 - Symmetry, continuity, convergence, and runtime
 - Publishes requirements and procedure
- Benefits
 - Consistency in implementation on user side
 - Recognition and funding to model developers
 - Improved model accuracy and features
 - Through detailed review during the standardization process
- CMC-Standard SOI Model
 - BSIMPD → BSIMSOI (University of California, Berkeley)
 - Next-generation SOI standardization was kicked off in 2006
 - Candidates
 - PD PSP-SOI PD, XSIM PD
 - DD (FD) PSP-SOI DD, HISIM-SOI, ULTRA-SOI, XSIM DD

Conclusion

- Reviewed the current and future challenges in compact modeling, characterization, and circuit simulation of PD-SOI CMOS
- Floating-body effects
 - One of the main performance boosters
 - Main complexity in PD-SOI compact modeling
 - Measuring key components is challenging
 - Nevertheless, mechanisms are well understood; thus, can be reproduced
- Body-contacted device modeling
 - Parasitic gate capacitance and body resistance need to be accurate
 - Distributed effect of the body resistance can be simplified
- PD-SOI simulation requires tighter convergence criteria and novel simulation techniques, mainly due to the floating-body effects
- Model standardization promotes implementation consistency and improved accuracy and features.

Acknowledgments

- Advanced Semiconductor Technology Alliance (ASTA)
 - Technical contributions
 - K. Bernstein (IBM)
 - B. Rice (Freescale)
 - Management support
 - A. Icel and N. Kepler (AMD)
 - S. Springer and R. Wachnik (IBM)
 - S. Jallepalli and M. Zunino (Freescale)
- Academic SOI Compact Modeling Research Groups
 - BSIMSOI Prof. Chenming Hu (University of California, Berkeley)
 - PSP-SOI Prof. Gennady Gildenblat (Arizona State University)
 - UFSOI Prof. Jerry G. Fossum (University of Florida, Gainesville)
 - HiSIM-SOI Prof. Mitiko Miura-Mattausch (Hiroshima University)
 - XSIM Prof. Xing Zhou (Nanyang Technological University)
 - ULTRA-SOI Prof. Jin He (Peking University)

