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History of Manufacturing PD-SOI

= Successfully manufactured in ULSI from the 225 nm through the 45 nm

nodes
0.2um 64b PowerPC uProcessor 45 nm 2GHz eDRAM
IE U] ) PD-SOI Performance
2-input NAND +20% Improvement
compared
4-input NAND +28% to bulk
2-input NOR  +21%
4-input NOR  +26%
XOR  +40%
Domino AND +15%
Domino MUX +25%
SRAM +20%
0%(bulk) 20% 40%
1999 ISSCC by D. H. Allen et al. 2008 VLSI Symp. by P. Klim et al.
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Benefits of PD-SOI CMOS

= Higher performance and lower power
* Dynamic threshold (V,) lowering
= Reduced capacitive loading
= Reduced body effects in stack transistor circuits

= Better control

* Reduced V, versus L, sensitivity
= Elimination of well-implant proximity effects (WPE)

= Natural isolation of auxiliary device elements (embedded
DRAM, passives, high-voltage, and RF devices)

= Better reliability
= Reduced soft-error rates
= Elimination of latch-up
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Bulk CMOS vs. PD-SOI CMOS

Bulk CMOS PD-SOI CMOS

-/\ ‘i /\-/\ (I [

N

Identical body potential Independent body potential

= The chief difference of the PD-SOI is that the body of each SOI transistor is an
independent 4" terminal for the device

= When absolutely needed, the body can be fixed to a chosen potential with a body tie

Transistor
. ith body
Floating _ wi
Body il EElNi=R g= tie
Transistor

= However, in 99.9% of the chip, transistors will be operating as floating body devices
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Self-Heating: DC Ry, Measurement
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Self-Heating Removal

Drain Current [mA]

Channel Current Parasitic Current
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= Based on measured temperature dependence of the current
= Linear
= Quadratic

= Exponential
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Self-Heating during Simulation

al T T

0 02 04 06 08 1 1.2 14 16 18 2
Time [ns]

Addition of temperature node leads to simulation time increase, and, possibly,
convergence issue

Can disable self-heating mode for many high-performance logic products
= Switching time is much faster than the thermal time constant

= Most analog blocks are operating at low enough bias range
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PD-SOI Model Parameter Calibration
method1 fQe|f-Heating method 2
/Rth, C,, fitting
Self-Heating
Removal from IV

DC Body Currents Fitting

(Idiode’ Igb’ Iii’ IGIDL)
— Body
I Body Effect & CV Fitting I Contacted
Fitting
I First-pass BC IV Fitting I
I First-pass FB IV Fitting I
Floating
] Body
Refine Check Circuit Fitting
Calibration Response

I Recenter Model I

Done
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Do History-Effect Modeling First!

Intrinsic MOSFET
Characteristics

IDsat’ IOff’ Vt’

i
N

-

History
Effect

Parasitic
Characteristics

Lt lgjan ==

= Intrinsic MOSFET characteristics have only small impact on history

effect
= Except for the body-effect

= Adjusting parasitic characteristics have huge impact on history effect
and cause noticeable change in channel current
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Challenges in Measurement & Calibration

Active
Gate Poly
P+ I/
e e B e ——— -
! !
| |
v v
Parasitic
Opposite-
STI P+ P- P w/ halo
Bridge-Region
Easily Gets Fully-
Depleted
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Parasitic Opposite-Type Gate
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" Big discrepancy in I, characteristic due to the parasitic
= Especially in inversion region
= Solutions:

= Selectively use specific regions
= Use bulk wafer
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Fully Depleted Body
Body-Effect

0.5 —

0.1}
| AMOSFET 2/0.0875um
0.0""""-|---.|....
-06 -04 -0.2 0.0
Vbs [V]

= Body bias can cause a

= Solutions:

= Selectively use specific regions
= Emphasize intrinsic response

CJunction [pF]

Junction Capacitance

15L

—
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o

DBS1

= Low-doped bridge region can introduce artifacts in measured data

AMD{1

The future is fusion



Slide 13

DBS1 I cannot change this graphic image, but it should not be hyphenated because the ly in fully = the hyphen in this use
David B. Schlosser, 9/13/2008



Implicit Calibration using RF Data
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= Self-heating response time
= Impact ionization
= Body-contact time constant

10° 10* 10° 10° 10" 10® 10° 10"

= RF measurement offers much implicit information:
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What Causes Floating-Body Effect?

= Body potential is a function of:
= Capacitive coupling to
= Source
= Drain
= Gate
= Substrate (small)
= Diode leakages to
= Source
= Drain
= Gate leakage
* Impact ionization

= Also subject to the previous
switching history

Source

Buried Oxide

Substrate
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CMOS Inverter Operation
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Definition of History-Effect

1 L
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Definition of History-Effect

History-effect
H = (Tlst_Tan) / U ond

= 1%t switch : input transition after being held constant for a long time
= 2nd gwitch: input transition short time after the 1%t switch
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Typical History-Effect

Evolution of Switching Delay Input Clock Shape
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= Delay is subject to switching
history of the logic gate
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Pulse Compression vs. Expansion

B S S —_

Positive H (T 1, > T 5,4)

Compression

L | shs

Negative H (T 1, < T 5,9)

Expansion
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Delay/Stage [ps]

Impact of Loading on History-Effect

Unloaded
6.5
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Heavily Loaded

= Very limited impact of loading capacitance

= Extremely large loading (100fF) -- changing switching delay by ~15X

= Only changes ~2% in history-effect

100 ‘ ‘ ‘
IBM 9S2 Model (1.2V 25C)
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Combined Capacitive/Resistive Network

C-Divider
()
(@)
@ :
=
g RC Decay
R-Divider
Time
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Time for Actual Contribution to Speed

/L

4

Initial DC

Conditions

\_/

/L

= st SW : Initial DC
= 2nd SW : Initial DC + Capacitive Coupling

\ ’ - Capacitive
Coupling
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Capacitive Coupling

4 4

MY VA

Drain Coupling

A Coupling
—

Drain
Coupling

Gate
Coupling

= Capacitive coupling is stronger to drain than to gate

ez



Key Components (initial DC Condition)

1st SW 2"d SW

| Idio,rev
gb,acc ‘_/ IGIDL J
||/| I Idio,for
gb,inv —
{ —:L‘v‘ | ?
dio,for
V

= 1st SW Initial

= KCL balance between forward and (reverse ;4. tIgpL /1)

= Accumulation I, is much smaller than forward Lj;oqe
= 2nd SW Initial

= KCL balance between forward Lj;,4.*2 and inversion Ly,
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Key Components (Capacitive Coupling)

Voo T

- (’}',rev

C.
AV, =V LI
+ b DD
C E— EE— S Cgb,acc + Cj,for + Cj,rev

gb,acc —_Al/b—_ (jj,for

v -V

= Basically a voltage-divider that consists of
= Gate-body capacitance, and

= Junction capacitance
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Key Components (Body-Effect)

Diode current

Gate current
Gate capacitance

Junction capacitance

= Body potential is established mostly by diode and gate
characteristics (DC and AC)

Vbody

V., &
speed

= This body potential is translated into the actual switching
performance by the body-effect (the main transfer function)
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Impact of Gate Capacitance & Current

Inversion C_,, Impact Inversion |, Impact
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" C,, is critical for Vi, dependence slope
" I, became a major factor from 90 nm technology onward
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Impact of Diode Current

(1 st_2nd)/2nd [%]

Forward 1,40 LEVEIl Impact Reverse | 4 IMpact
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= The diode current characteristic is the key characteristic dominating the V,
and temperature dependences of the history-effect

= Proportional to forward 14 4.
= Inversely proportional to reverse 14,
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Final Reproduction of History-Effect
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- 1000-stage Delay Chain T
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= The measured history-effect can be successfully reproduced across a

wide range of conditions when all the key components are properly
modeled
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Other Floating Body Effects: Parasitic BJT
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Challenges: Statistical Modeling
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History Effect [%]
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= Single-stage logic gate measurement

= Requires very high-accuracy test equipment

= Extremely low throughput
= Delay chain measurement

= Averaged over all stages, loosing variation details

= Large area

= In-line characterization

= Approximate precision
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Back-Bias Range of Interest

Body-Contacted

and Bulk
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= Sometimes the body effect is not able to fit for the entire range
= Then some range should be compromised
= Separating body-contacted and floating-body models maybe more

desirable

AMD{1

The future is fusion



Can Body Be Really Tied?

Body Potential
Fluctuation
Gate e
Coupling
01L | Body RC
— R Decay
2. 0.0 |
=" 0.1} —
0.2f /
: \
0.3 L :
0.0 0.1 Drain 7

Coupling

0.5

= Body-contacted PD-SOI circuit experiences the coupling effects exactly

same as floating-body one
= Thus, it also exhibits history effect

History Effect of
1 BC CMOS
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Body-Contact: Gate Capacitance

_ Physical BSIMPD ~ BSIMSOI 4.0

Active
Gate Poly
P+ I/ Drain Drain

A, A, Agbcp

Body

Source Source
p*/p-

M ‘

Rhnd]/pyf Rh'n Rbodyex t Rbp
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Body-Contact: Gate Capacitance

Gate Capacitance

Active , , , , : ,
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Body-Contact: Gate Capacitance

Charge Ratio

Impact on Switching Delay
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= The charge ratio is 0.2 ~ 0.5 within practical range

= 2 ~5x overestimation

= [ts impact of switching delay is not negligible
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Body-Contact: Gate Capacitance

Active

Gate Poly

P+ I/l

Physical
Drain
A A,
Body
Source
p/p-

Rhnd]/pyf Rh

is]

BSIMSOI 4.1

Agbcp2
ody

Agbcp

Drain

38 | IEEE SSC Society Fort Collins Chapter | Nov 10, 2008
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Bias Dependence of Body Resistance

body-tied nFET p*

A,

it

make lateral
connection to
undepleted p-well

n* diffusion

Courtesy of Alvin Loke et al.

= Body resistance is determined by majority carriers in the neutral region
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Bias Dependence of Body Resistance

Body Bias Dependence Gate Bias Dependence

T T T T 60 I
® measurement data ® measurement data

nonlinear BB model |

nonlinear RB model

N
3]
|
a
=

B
o

Body resistance, M
Body resistance, k2

2007 CICC by W. Wu et al.
= Bias significantly modulates the depletion region; in turn, body resistance

= Not captured in BSIMSOI
= Well captured in PSP-SOI
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Body-Contact: Distributed Body R

Distributed Single Lumped

N segments

p+/p\L n+/p\L n+/}p\k n+/p i
Tcap cap FE ; ‘

Rhndum' bp”/ N

Measurement Model

DC Values AC Values?
|

fusoni 3 41 | IEEE SSC Society Fort Collins Chapter | Nov 10, 2008 AMDH
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Body-Contact: Distributed Body R

Rule of Thumb

= Factor of 1/3 for single-side contact; 1/12 for double-side contact

= Mathematically derived for gate resistance noise
= A. B. Philips, BJT Base Resistance (McGraw-Hill, 1962)

= R.P.Jinal, MOSFET Gate Resistance (IEEE T-ED, pp. 1505-1509, October 1984)
= Applicable for other distributed resistance associated with active gain

10 T
® 10-seg T-gate
O  10-seg H-gate
SH  1-Lump 1/3
e 1-Lump 1/12

History Effect [%]
N

O Technology-C
Op & ® W, =W, /2=5um
10° 10° 10"

Frequency [Hz]

AMD{1

The future is fusion



PD-SOI Circuit Simulation: Accuracy
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10° 10° 107 10° 1x10” 1x10*
vntol in HSPICE [V]
= Accuracy options
* AVyo4y << Vpp 2 needs higher accuracy in voltage convergence criteria (vntol, etc.)

" Ihoay <<Ipg > needs tighter control on off-conductance of capacitors (gmindc)

= Stronger sensitivity of diode currents at low temperature = needs special attention on
numerical convergence criteria
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PD-SOI Circuit Simulation: Time
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= Charging/discharging

= Circuits in sleep and wake-up modes

= Steady-state

Harmonic balance

= Solves Fourier series in f~-domain

= Requires over-sampling and
sufficient harmonics

Periodic steady state

= Projects the evolution of the net
body charges using the Newton
method

Indirect body initialization

technique

= icv(n)=Vpp/2

Transient HB

= Speed up by orders in magnitude

= Critical for larger multi-input circuits, SRAMs, clock

drivers, I/O, PLL, etc.

= Takes ps~ms = impractically long
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Model Standardization

= Compact Modeling Council (CMC)

= Hosted by the Government Electronics and Information Association (GEIA)
= Evaluates fundamental physics and numerical properties
= Symmetry, continuity, convergence, and runtime
= Publishes requirements and procedure
= Benefits
= Consistency in implementation on user side
= Recognition and funding to model developers

= Improved model accuracy and features

= Through detailed review during the standardization process
= CMC-Standard SOI Model
= BSIMPD - BSIMSOI (University of California, Berkeley)
= Next-generation SOI standardization was kicked off in 2006

= Candidates
= PD PSP-SOI PD, XSIM PD
= DD (FD) PSP-SOI DD, HiSIM-SOI, ULTRA-SOI, XSIM DD
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Conclusion

= Reviewed the current and future challenges in compact modeling,
characterization, and circuit simulation of PD-SOI CMQOS

= Floating-body effects

= One of the main performance boosters

= Main complexity in PD-SOI compact modeling

= Measuring key components is challenging

= Nevertheless, mechanisms are well understood; thus, can be reproduced
= Body-contacted device modeling

= Parasitic gate capacitance and body resistance need to be accurate

= Distributed effect of the body resistance can be simplified

= PD-SOI simulation requires tighter convergence criteria and novel
simulation techniques, mainly due to the floating-body effects

= Model standardization promotes implementation consistency and improved
accuracy and features.
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