

Designing Electronic Systems for Space

IEEE Solid-State Circuits Society (Denver) July 23, 2009

Previously presented at 2008 Bipolar/BiCMOS Circuits & Technology Meeting (BCTM)

Author/Contact

David A. Sunderland

Boeing Space & Intelligence Systems (S&IS) El Segundo, CA

david.a.sunderland@boeing.com

Introduction

"Spacecraft" includes a wide variety of applications

- Communication satellites
- Earth-observing satellites
- Manned laboratories
- Manned exploration vehicles
- Robotic observatories
- Planetary probes
- Launch vehicles

Focus on communication satellites

- Electronic components & systems

Design requirements & constraints

- Individual issues are common to specific terrestrial design domains
- Collectively, the set is unique

Outline

Space Design Requirements & Constraints

- Performance
- Radiation
- Reliability
- Logistics

Communication Satellite Building Blocks

- Impact of issues above

Design for Radiation & Reliability

- Common mitigation design techniques
- Emphasis on custom bipolar integrated circuits

Design for Qualification & Test

- Product characterization & qualification requirements

Space Design Issues Performance

Function & Performance Metrics

- e.g. throughput, bandwidth, gain, accuracy, noise factor
- Flow down from system requirements

Flexibility

- Flexibility or programmability in function or performance
- Changing user requirements
- Limited development schedule

"Size", "Weight" and "Power" ("SWaP")

- Dominant performance constraints
- Size & weight usually limited by launch vehicle

Space Design Issues Performance (continued)

• "Power" is influenced by three distinct constraints:

- Power generation
 - Typically from solar cells
- Heat dissipation
 - Transfer within satellite by conduction, away by radiation
- Reliability
 - Most failure mechanisms are thermally activated

Comparison to terrestrial applications

- SWaP constraints similar to portable consumer electronics
- Level of performance required is far greater
 - e.g. throughput, bandwidth

Satellites can be thought of as delivering "mainframe performance on a laptop budget"

Space Design Issues Radiation - Environment

Internally generated

- Electromagnetic Interference (EMI)
- Crosstalk
- "Man-made" sources
 - Not discussed here

Natural sources

- Charged particles
- Galactic or solar origin
- Radiation belts around planets

Varies with location & time

- Orbital altitude & inclination
- 11-year solar sunspot cycle
- Solar flares

Source: NASA

Spacecraft must operate within a complex and variable radiation environment

Space Design Issues Radiation – Cumulative Effects

Measurements

- Integral fluence (particles/cm²)
- Total Ionizing Dose (TID, in "Rads") for specific material

Gradual damage

- Charge buildup on surfaces & dielectrics
- Disruption of lattice ("displacement")

Device impact

- Threshold voltage shift
- Leakage current
- Degradation of mobility
- Degradation of bipolar gain

Space Design Issues Radiation – Single Event Effects (SEE)

- Impact of specific particle causes ionization track within device
- Deposited charge or field disturbance changes circuit behavior

Circuit change can be temporary

- "Single Event Transient", SET

Change in stored memory state

- "Single Event Upset", SEU
- If changes function "Single Event Functional Interrupt", SEFI

May be destructive

- "Single Event Latchup", SEL
- "Single Event Burnout", SEB
- "Single Event Gate Rupture", SEGR

Space Design Issues Reliability

Mission success criteria

- Probability that function is maintained for expected life of spacecraft
- Flows down from system requirements

Operational life

- Satellite "design life" can be very long (e.g. 15 years)
- "Normal" devices must not "wear out" when exposed to operational stress

Fault tolerance

- Allows for early failure in non-normal elements ("random failures")
- Limits system impact of single event effects

Space Design Issues Reliability (continued)

Operating temperature

- High temperature accelerates most failure mechanisms
- Wider range (esp. colder) than normally seen on ground

Temperature cycle

- Mechanical wearout is accelerated by differential thermal expansion
- Frequency and depth of the thermal cycle typically depend on orbit

Vibration & Shock

- Launch & pyrotechnic deployments

Radiation & Vacuum

- Can cause some materials to decompose or degrade

Moisture/corrosion/contamination

- Moisture accumulated while on ground
- Lingering effects once in space (e.g. corrosion & expansion)

Space Design Issues Logistics

Cost, schedule & risk

- Satellites typically largely customized, built in very small quantities
- Program cost & schedule dominated by non-recurring design phase
- Minimizing cost, schedule & risk in this period is paramount

Test coverage

- Design/manufacturing errors & faulty components not repairable
- High precision & robust verification at each step is critical

Supply life

- Components should be "mature" at program start to minimize risk
- Schedule from concept to last launch may be very long
- We must often consider component obsolescence

Communication Satellite Building Blocks Payload Conceptual Block Diagram

Communication Satellite Building Blocks RF Subsystem

Components

- Antenna (incl. phased array)
- Amplifier (LNA, PA, VGA, RF, IF, BB, Buffer)
- Mixer
- Filter
- Switch
- Attenuator, Isolator
- Pad, Power Splitter
- Phase Shifter

Dominant issues

- Performance
- Long life
- Reliability
- Power/thermal
- Volume/mass

Communication Satellite Building Blocks RF Subsystem

Critical issues performance related

- Tie closely to system specifications
- e.g. bandwidth, gain, output power, crosstalk isolation, stability

High bias voltage & current

- For high output power & bandwidth
- Leads to wearout life, power dissipation & thermal load concerns
- Multipaction (resonant breakdown in vacuum)

Small geometry

- Forced by volume/mass constraint & bandwidth requirement
- Exacerbates crosstalk

Contamination

- III-V RF devices are sensitive to hydrogen poisoning

4-ch SiGe Ku band Beamformer

Chip-on-board Manufacturing

Single-chip and Chip-on-board integration improve performance and Size/Weight/Power

Communication Satellite Building Blocks Phased Array Antennas

Distributed architecture drives voltage & temperature variation across array, making specifications more challenging to meet

Communication Satellite Building Blocks Baseband Subsystem

Components

- Data converter (ADC, DAC)
- Clock: PLL, DLL, Divider
- Muliplexor, Demultiplexor
- Memory
- Serializer/Deserializer
- Digital Signal Processor (DSP)

Dominant issues

- Performance
 - e.g. bandwidth, accuracy, throughput, clock skew
- Power/thermal
- Volume/mass
- Radiation (particularly SEE)
- Verification/test

Communication Satellite Building Blocks Baseband Subsystem

High data conversion frequency

- Minimizes RF hardware
- Adds system flexibility

Challenging ADC/DAC specs

- Cover TID/wearout parameter shift

Vast memories

 Must be protected against SEU, esp. configuration memory (SEFI)

Accurate high speed clocks

- Synchronize subsystem parts
- Must be protected against SET

Complex system requires:

- Extensive design verification
- High coverage manufacturing tests

Spaceway DSP Unit

- Performs equivalent of 62 TOPS
- Utilizes 0.13 m³, 124 kg & 2100 W

High conversion frequency & more processing in digital domain leads to very large & powerful DSP systems

Communication Satellite Building Blocks Telemetry/Control Subsystem

Components

- Sensor (e.g. high res. audio freq. ADC)
- Mechanical Drive
- RF Control

Dominant issues

- Performance
- Fault tolerance
- Thermal management
- TID
- SEE

Communication Satellite Building Blocks Telemetry/Control Subsystem

Telemetric sensors

- High accuracy & low noise susceptibility; very low bandwidth
- Strongly affected by TID-induced parameter drift & parasitic leakage
- Worse environment (temp. & radiation)

RF array control analog electronics

- Maintain efficiency with changing environmental & load conditions
- Minimize/compensate rad-induced leakage, offset & gain reduction
- Protect control loops against SET
- Critical for managing redundant assets
 - Fault tolerance a special challenge
- Increasingly distributed (embedded)
 - Miniaturization is important

BiCMOS Embedded Services Module ASIC

Single chip T&C services ASIC with serial interface & embedded redundancy management significantly reduces SWaP

Communication Satellite Building Blocks Power Management Subsystem

Components

- Regulator
- DC-DC Converter
- Switch
- Filter
- Controller
- Condition Sensor

Dominant issues

- Performance
- Reliability
- Thermal management
- TID
- SEE

Communication Satellite Building Blocks Power Management Subsystem

- High voltages required by primary PM & motor driver circuits
 - Part selection for SEL/SEB/SEGR immunity is more difficult
- Reduced IC operating voltage
 - Need tight regulation
 - Extra sensitivity to TID headroom reduction in secondary regulators

Fast transient response under variable load

- Large energy storage
- Robust Pulse Width Modulation
- Critical for managing redundant assets
 - Fault tolerance a special challenge
- Increasingly distributed (embedded)
 - Miniaturization is important, but more difficult with only "rad-hard" parts

Hybrid (central/distributed) power system for redundant units

Combination of redundant centralized & distributed (Point Of Load) power converters improves reliability & efficiency

Communication Satellite Building Blocks Bipolar/BiCMOS Usage

- Advantages in bandwidth, output drive & precision
- Used in a wide variety of applications, e.g.:
 - High speed clock generation
 - Analog to digital converters (ADCs)
 - Digital to analog converters (DACs)
 - RF/analog circuitry
 - Power supplies
- GaAs, SiGe & InP HBT technologies offer highest performance

SiGe HBTs

- Allow integration with silicon CMOS
- Good for mixed signal SoC applications (e.g. data converters)

InP HBTs

- Direct bandgap good for optoelectronic integration
- Best for ultra-high-speed PLL & SERDES devices

Bipolar technology plays a major role in space electronics

Communication Satellite Building Blocks Bipolar/BiCMOS Usage – Examples

10b 1.5Gsps SiGe down-converting ADC / 1:4 DEMUX

10b 3Gsps SiGe up-converting DAC / 6:1 MUX

40GHz InP 1:4 DEMUX / CDR

40GHz InP Clock Multiplier / 4:1 MUX

SiGe & InP HBT technologies utilized for highest performance

Design for Radiation Part Selection

No way to shield against cosmic rays

- Need parts immune to SEL/SEB/SEGR
- Reduce burden on designer
 - Select for minimal parametric shifts due to TID, low SEU/SET rates
- TID tolerance generally improves with reducing gate thickness
 - Enables more use of commercial CMOS

Enhanced Low Dose Rate Sensitivity (ELDRS)

- Seen in some bipolar devices
- Due to competition between trap creation & charge movement
- Requires test at very low dose rate

Dose rate dependence of TID degradation in Motorola LM139 (Carriere, IEEE TNS 42-6, 1995)

Part selection is "first line of defense" for most of circuits & radiation effects previously discussed

Design for Radiation Shielding

- Shielding generally effective for minimizing TID & surface charging
 - Unlike case for cosmic rays
- Natural shielding from spacecraft structures & unit enclosures
 - Lessens design problem for deeply buried components

Added around "soft" components

- High-Z materials are most effective, but most costly in weight
- Grounding of floating metals
 - Prevents internal discharges from surface charging

Shielded chip level packaging (SOURCE: Maxwell Technologies)

Natural shielding helps a lot, but more can be added at unit or component level, trading hardness for weight

Design for Radiation Worst-Case Circuit Analysis (WCCA)

Model TID effects & include in WCCA

- Where component selection & shielding do not eliminate problem
- Requires local characterization & modeling

"Over design" circuits

Extra components, higher bias compensate expected degradation

Increasing bias level of bipolar transistors

- Most sensitive to TID in low current regime
- Improves radiation tolerance at expense of power dissipation

Renegotiation of system requirements

e.g. increasing input signal swing, power budget or error allocation

TID degradation in transistor gain vs. collector current (Kerns, Proc. IEEE 76-11, 1988)

If parametric degradation due to radiation is understood, it can be compensated for in circuit design

Design for Radiation Single Event Upset / Transient

- SEE has become increasingly important with:
 - Device scaling
 - increasing complexity
 - Higher bandwidth
- Must now consider issues which could previously be ignored
 - SET in clock trees or logic paths
 - Multiple bit/node upsets from a single particle hit
 - Charge/well sharing
 - Nuclear reactions in overlayers

Strong directional dependence of upset rate in *hardened* 90nm CMOS flip-flop (Amusan, IEEE TNS 54-6, 2007)

More careful testing & device/circuit modeling is required to evaluate impact of complex Single Event interactions

Design for Radiation Single Event Upset / Transient (cont)

Advanced bipolar devices are:

- Relatively tolerant to total dose & displacement damage
- Particularly sensitive to SEU/SET
- Relatively large collector-substrate junction area
 - Represents significant target for charge collection
 - Far higher event rate than typically seen in modern CMOS

Process modifications

 Can improve SEE hardness to limited extent

Circuit techniques & architectural design approaches are required to insure reliable operation in space

Design for Radiation Memory SEU Hardening

Current sharing hardening

- Relies on several current paths to control circuit operation
- Increase in current & redundancy improves SEU hardness

Dual interleaving

 Uses local redundant nodes to limit SEU impact

Design for Radiation Memory SEU Hardening (continued)

Gated feedback cell

- SEU hardness improved by redundancy of two sections
- Separate power supplies allow testing of redundant circuits
- Diodes limit current into substrate, allow faster recovery

Design for Radiation SEU Architectural Hardening

Error detection and correction (EDAC) coding

- Used mainly for memory subsystems
- Triple modular redundancy (TMR)
 - Used for control & data paths where upsets cannot be tolerated
 - Voter compares outputs of three registers or delay flip flops

• Simple TMR structure (left) subject to SET on clock & data lines or voter logic

- Not acceptable for command path or major clock tree affecting entire DSP or computer
- Triplication of voters, inputs & outputs (right) increases SEU hardness
- Large penalty in area, power & performance

Design for Reliability Wearout Life

- High reliability requires managing wearout life & random failure rate
- For wearout life, it is important to:
 - Understand how devices wear out in response to stresses such as temperature, voltage, current & thermal cycling
 - Limit stresses seen by devices in product, consistent with this understanding & product life requirements
- Characterization of wearout best done using special test structures
 - Primitive device elements (e.g. transistors, passives, wires & vias)
 - Well controlled & highly accelerating stresses
- Study & model distribution of failure time for each mechanism
 - Predict median time to failure (MTTF) for given circuit conditions
 - Ensure sufficient margin beyond design life for statistical variation
- Develop general stress guidelines
- Verify product stresses remain within guidelines
 - Circuit simulation & electrical rules checker (ERC) programs

Design for Reliability Parametric Drift

- "End of life" models required for WCCA where wearout mechanism manifests as parameter drift
 - e.g. bipolar gain reduction at low current due to hot carrier injection (HCI)
- Compared to terrestrial circuits, long wearout life requirement of space applications often requires:
 - "over-design" (increase in power level or complexity)
 - or "derating" (reduction in performance)

Examples

- Limit V_{CE} to reduce HCI, thereby degrading analog/RF signal-to-noise performance
- Increase metal line width to improve electromigration life, introducing capacitance that limits circuit speed

Current gain degradation for 200GHz SiGe HBT with 1hr stress at V_{CB} =3.5V & V_{BE} =0.88V

Source: Zhijan, IRPS'03

Design for Reliability Random Failure Rate

- With intrinsic wearout minimized by limiting stresses, product failure rate is determined by "extrinsic" failures
 - Early failure of abnormal elements present in any complex product
- Estimate this failure rate
 - Industry guidelines (e.g. MIL-HDBK-217)
 - Assumes constant failure rate vs. time, adjusted for use condition & part quality
 - Field failure data (from terrestrial applications)
 - Large population accelerated life tests
- Add redundant elements to allow for some devices to fail
 - At the unit level (e.g. duplicating entire functions)
 - Internal to a unit (e.g. "M-for-N" redundancy)
- Compute overall system reliability considering redundancy
 - Using custom statistical tools
- Perform design trades to meet system reliability requirement
 - Where best to add redundant elements
 - Where greatest effort should be expended in thermal management
 - Both influence weight and cost

Design for Reliability Random Failure Rate (cont.)

Redundant elements can be:

- Continuously powered ("active sparing")
- Unpowered until needed ("cold sparing")
- Some mixture of the two approaches

Failure Modes and Effects Analysis (FMEA)

- Studies specific types of device failures that might occur, and their impact on system
- Circuits that drive or are driven by redundant elements must operate in presence of failures (e.g. shorted inputs or outputs)
- Space systems often have requirement that no "single point failure" in electronics can cause entire mission to fail

Design for Qualification

Space electronics is virtually never installed in a satellite and launched until it is "qualified"

- Confirmed high probability to meet operational requirements for period exceeding mission life
- Can't put product in operational environment (in satellite, in space) for mission life, so:
 - Develop data during design to gain confidence
 - Perform specific tests at selected conditions to verify expectations

Qualification should be hierarchical

- Verify underlying parts, materials, processes before moving to higher levels of assembly
- Include design libraries, models and tools

Technology Readiness Level (TRL) scale (SOURCE: NASA)

NASA TRL scale is one of many tools in maturity assessment

Design for Qualification (cont.)

Frequent design reviews ensure that:

- Requirements and interfaces are understood
- Function and performance meet expectations in all operating modes (including failure conditions)
- Size, weight and power are within budget
- Wearout life of all components exceed design life
- Variation due to process, voltage & temperature, as well as parametric drifts due to radiation & wearout, included in WCCA
- Random failure rate will be acceptable
- Disturbances from SEE occur no more frequently than allowed, with manageable system impact
- Product can be readily manufactured
- Manufacturing tests can detect faulty components

Design for Test

Functional & parametric qualification test

- On "proof of design" (POD) or "engineering model" (EM) prototypes
- Wider than normal environmental exposure

Radiation testing

- $-\gamma$ -ray, X-ray, neutron, proton & heavy ion labs
- Sophisticated modeling to calculate orbital rates
- Complex fixtures, special test equipment (STE)
- "Flight" products put through battery of "acceptance" tests
 - Similar to qualification tests (same STE?)
 - Emphasizes detecting faulty or out-of-spec components, not verifying design
- Acceptance tests also done hierarchically
 - Part replacement more costly late in assembly

Qualification (including radiation) & Acceptance testing have similar requirements, but different goals

Heavy ion SEE test setup (SOURCE: JPL)

Design for Test (continued)

For both Qualification & Acceptance test, circuits should be designed with DFT concepts

- Examples: test points, scan register chains, boundary scan, self-test
- Improve both "controllability" & "observability"
- Low probability of missing faults in Acceptance tests
- Simplifies design of STE
- Simplifies debugging issues found in Qualification testing

ASIC test based on IEEE 1149.1 (Lee, AUTOTESTCON'99)

IEEE 1149.1 Boundary Scan enables hierarchical system test

Summary

In this tutorial, we have:

- Reviewed requirements & constraints facing designers of electronic components & systems intended for spacecraft
- Discussed how design of key electronic building blocks in communication satellites is influenced by these issues
- Reviewed design techniques typically used to deal with these issues, particularly for mitigating radiation effects
- Illustrated some of these techniques with examples taken from custom bipolar integrated circuits
- Discussed how compliance with these requirements & constraints is demonstrated in resulting products
- Suggested how DFT methods can assist with this demonstration

Acknowledgments

The author gratefully acknowledge the assistance of the following:

- Larry Bocock
- Ron Burch
- Hector Castillo
- David Crampton
- Jerry Gorelick
- John Grebliunas
- Chris Guenther
- David Hansen
- Jaime Lerma
- David Lloyd

- Anthony McKay
- Keith Nielsen
- William Procopio
- Steven Thomas III
- Anduin Touw
- Tam Trinh-Perches
- Henry Warren
- Gary Wu
- Michael Zwang
- Boeing Satellite Development Center management
- Boeing Solid-State Electronics Development management
- Steve McComb (Maxwell Technologies)

