Loopback Architecture for Wafer-Level At-Speed Testing of Embedded HyperTransport™ Processor Links

Alvin Loke, Bruce Doyle, Michael Oshima¹, Wade Williams², Robert Lewis², Charles Wang¹, Audie Hanpachern³, Karen Tucker, Prashanth Gurunath¹, Gladney Asada¹, Chad Lackey, Tin Tin Wee, and Emerson Fang¹

AMD, Fort Collins, Colorado, USA

- ¹ AMD, Sunnyvale, California, USA
- ² AMD, Austin, Texas, USA
- ³ Cortina Systems, Sunnyvale, CA

Custom Integrated Circuits Conference September 16, 2009

Outline

- Motivation
- HyperTransport[™] Overview
- Loopback Implementation
 - Architecture
 - Loopback Channel
 - Transmitter
 - Receiver
- Silicon Results
- Conclusion

Motivation

- Processor dies now talk with each other using full-duplex, bidirectional point-to-point links
 - High-bandwidth, low-latency communication
 - Scalable vs. common FSB architecture
 - e.g., HyperTransport[™] (HT) in AMD products
- I/O ports per die is increasing
 - Higher socket counts -> more board connectivity
 - MCM embedded links -> more package connectivity
- Cost benefit is increasing to sort for functional I/O before packaging, especially for MCMs
- Implement on-chip I/O loopback for low-cost at-speed wafer-level testing

Die-to-Die Processor Communication

- PCB max 30" trace + 2 connectors
- MCM substrate 4" trace

HyperTransport™ (HT) Overview

- Source synchronous
 - Forward half-rate clock for RX data retiming
 - Common-mode jitter rejection, low latency
- 0.4 to 6.4Gb/s (0.4Gb/s steps) NRZ PAM-2
- 20 lanes per direction (split into 2 sublinks)
 - 1 CLK & 9 data (CAD/CTL) lanes per sublink
- HT1 (0.4–2.0Gb/s)
 - CDR bypassed, data RX simply retimed by CLK RX
- HT3 (2.4–6.4Gb/s)
 - DLL-based CDR aligns received forwarded CLK to received data transitions for lower BER retiming

Opteron[™] 6000 Processor (G34 MCM)

HT Link Training (Handshaking)

- Coordinated by NB-IOC in both dies
- Each NB-IOC sends predefined training pattern to the other die
- Training arms CDR to align clock to data & signals start of data transfer
- # data lanes enabled depends on link traffic

HT Data Transfer

- Data transfer starts immediately after last bit of training
- Once data transfer is completed, HT port is disabled into one of several possible sleep states for power saving
- Data is scrambled by XOR or by 8b/10b to reduce ISI

Outline

- Motivation
- HyperTransport[™] Links in AMD Processors
- Loopback Implementation
 - Architecture
 - Loopback Channel
 - Transmitter
 - Receiver
- Silicon Results
- Conclusion

Enabling Internal Serial Loopback

- TX→RX serial loopback via on-chip channel
- No external channel required, hence test can be performed at wafer-level sort
- NB-IOC initiates link by sending training bits, then user-specified test pattern
- RX is self-trained using bits sent by own TX
- Controlled by JTAG

Sublink0 Loopback

Sublink1 Loopback

Transceiver Loopback Floorplan

Wafer-Level Testing

Wafer-Level Test Supply Noise

- Comes primarily from TX driver switching high currents through probe card pin inductance
- Can disable any TX driver per sublink during loopback

TX Loopback Implementation

Hybrid V-/I-mode output driver

RX Loopback Implementation

- Full-rate architecture
- Equalization: 1-bit speculative DFE + analog DFR filter

External Serial Loopback

- Package-level sort test
- Provides test coverage not exercised by internal serial loopback
 - TX output driver
 - RX analog front end
 - TX & RX equalization
- Can inject jitter into external channel for eye margining

Parallel Loopback Modes

- Package-level sort test
- RX→TX parallel loopback in HT or in NB-IOC
- Requires another HT port or BERT to initialize link
 & provide test pattern to RX
- Enables fault isolation

Outline

- Motivation
- HyperTransport[™] Links in AMD Processors
- Loopback Implementation
 - Architecture
 - Loopback Channel
 - Transmitter
 - Receiver
- Silicon Results
- Conclusion

Loopback Test Description

Wafers

12" bumped AMD
 Opteron[™] 6000
 processors
 (45nm SOI-CMOS)

Test conditions

- 1.1V, 1.3V
- 5.2Gb/s, 6.4Gb/s

Conway et al., Hot Chips 2009

Test pattern

- 108 cycles of alternating + K28.5 & -K28.5
- Passing test → BER < 5 × 10⁻¹⁰

Early Example of Test Sort Results

Die No.	HT Loopback Fail Description
1	Port3 Sublink0 @ 6.4Gb/s - 1.1V CAD2 bit error count = 63 (saturated)
2	Port0 Sublink0 @ 6.4Gb/s - 1.1V CAD2 bit error count = 2
3	PortO SublinkO/Sublink1 @ 5.2,6.4Gb/s – 1.1,1.3V Training failure in all CTL/CAD lanes
4	Port0 Sublink0 @ 6.4Gb/s - 1.1,1.3V CAD2 bit error count = 63 (saturated)
5	Port3 Sublink0 @ 6.4Gb/s - 1.1V CAD4 bit error count = 63 (saturated)
6	Port0 Sublink0 @ 6.4Gb/s – 1.1V CAD0 bit error count = 2
7	Port2 Sublink0 @ 6.4Gb/s - 1.1V CAD4 bit error count = 63 (saturated)

Conclusion

- Transceiver loopback enables wafer-level at-speed testing of HyperTransport I/O
- Demonstrated 6.4Gb/s test functionality
- Entirely digital architecture for simple implementation & verification
- Significantly improves package-level yield, especially for more expensive MCM packages
- Adds no extra sort infrastructure cost
- Established test for wafer-level screen of AMD 45nm products

Acknowledgments

- AMD Product Engineering Organization
- Michael Parker
- Heidi Grande
- Dennis Fischette
- Dicai Yang
- Dean Gonzales
- Tim Kasper
- Ari Shtulman