Copper Interconnect Technology for the 32 nm node and Beyond

Jeff Gambino IBM Microelectronics Essex Junction, Vermont

Outline

- Copper interconnect scaling
- Copper interconnect reliability
- Packaging + Through silicon vias (TSV)
- Passive devices

Effect of scaling on resistivity

H.B. Lee et al., IITC Proc., 2007, p. 64.

scattering, surface scattering, and Ta barrier layer.

Dual damascene process in SiCOH; via-first

Interconnect roadmap

H.-K. Kang, tutorial on Advanced Logic Technology, 2007

Dielectric trend

BEOL integration at 32 nm node

							Rı	ıle	Pitch (nm)	Scaling factor from 45nm	c
Y. Hayashi et al., AMC Proc., 2005. M. Tada et al. JEDM Proc. 2006						Cont Gate	acted Pitch	126	70%		
M. Aimadeddine et al., IITC Proc., 2007.							CA	pitch	100	63%	
X. Chen et al., VLSI Symp., 2008.							N+	/P+	56 (space)	70%	
reference	Hayashi et al Tada et al			. Aimaded	dine et	1X 1	neta1	100	71%		
company	Toshiba		NEC		ST		1.3X	metal	130	New level	
patterning	hardmask		hardmask <mark>hardmask</mark>		2X r	neta1	200	71%	1		
integration	hybrid hybrid		id	homo. low-k							
							<mark>SiOC</mark>				
layer	material	κ	material	κ	material	κ		Cu		Cu	
polish stop	SiOC	2.6	SiOC	3.1	*****	****	p-510 ₂				
trench dielectric	PAE	2.6	p-SiO ₂	2.4	SiOC	2.3	SiCO	Ŧ		SICOH	
trench etch stop	*****	***	*****	****	****	****	SiCN.	_		SiCN	
via dielectric	SiOC	2	SiOC	2.8	SiOC	2.3			ľ		
сар	CuSiN	***						Cu		Cu	
via etch stop	SiC	3	SiCN		SiCN						
K _{eff}		2.4		2.9			Hybri	id (N	EC) H	lomo Low-k	C(ST)

284nm

Gap/Blockout Mask

0.2 µm

S. Nitta et al., AMC Proc., 2007 S. Nitta et al., IITC Proc., 2008

Lithography

B. Lin, CICC Proc., 2009

poly, contact, M1: more layout restrictions

Need to extend optical litho down to 22 nm node designs are on grid with single orientation

Roadmap for liner/seed thickness

Chemical mechanical polishing (CMP)

M. Quirk, J. Serda, "Semiconductor Manufacturing Technology, 2001, Chap. 18. W.Y. Hsu, IRPS Tutorial, 2004.

CMP: insulator erosion and dishing

Y. Kamigata et al., MRS Proc., vol. 671, 2001, p. M1.3.1.

14

Cu Hole and Fill shapes

H. Landis, J. Sucharitaves, AMC Proc., 2006.

Guidelines for Dummy Shapes:

- 1. Big enough to resolve easily
- 2. Small and electrically isolated
- 3. Density \rightarrow center of the process window
- 4. Place FILL shapes everywhere they fit

Improve CMP uniformity by adding holes in wide lines and dummy metal shapes during data prep

Metal HOLE issues

- Reduced conductivity
- Critical via interactions
- Design requirements (less holes)
- Manufacturability (more holes)

Cu Metal FILL

Effect of layout on interconnect heating

Thermal conductivity:

A. Strong, F. Chen, IRW, 2004.

Interconnect scaling: reliability

Outline

- Copper interconnect scaling
- Copper interconnect reliability
 - Electromigration
 - Stress-induced voids
 - Time Dependent Dielectric Breakdown
- Packaging
- Passive devices

Electromigration basics

T. Sullivan, Int. Reliability Workshop, 2001 D. Pierce, P. Brusius, Microelec. Rel., 37, 1053 (1997)

Electromigration test

Kinetics of electromigration

current exponent

$$t_{50} = c \cdot j^{-n} \exp\left(\frac{E_a}{kT}\right)$$

median time to fail

current density

Kinetics limited by void nucleation (n=2)

Fast diffusion path:

Cu – SiCN interface

Kinetics limited by void growth and migration (n=1)

In-situ SEM of electromigration

370°C, 3 mA/cm²

Z.-S.. Choi et al., J. Mater. Res., vol. 23, 387 (2008).

1.0 μ m line; voids drift all the way to cathode before fail occurs

0.3 μm line; voids drift only 1 to 2 um before being pinned at g.b., then span line, causing a fail 23

Effect of scaling on EM

24

Methods to improve EM lifetime

Outline

- Copper interconnect scaling
- Copper interconnect reliability
 - Electromigration
 - Stress-induced voids
 - Time Dependent Dielectric Breakdown
- Packaging
- Passive devices

Stress-induced voids in Cu

T. Sullivan, in Stress Induced Phenomena in Metallization, 1999, p. 39. M. Hommel, IRPS Tutorial, 2008.

Stress-induced voids: confined grain growth

E. Ogawa et al., Int. Rel. Phys. Symp., 2002, p. 312.

a. M1 Cu deposition + CMP (no anneal)

b. After cap deposition; metal is saturated with vacancies due to grain growth. c. After via and M2 metal formation; void nucleates under via due to high tensile stress; void growth occurs by diffusion of vacancies along Cu-SiN interface.

Stress-induced void measurement

M2 (20 µm)-V2(0.26 µm)-M3 chain; 225°C

Fail rate for stress-induced voids as a function of via size and line width.

Outline

- Copper interconnect scaling
- Copper interconnect reliability
 - Electromigration
 - Stress-induced voids
 - Time Dependent Dielectric Breakdown
- Packaging
- Passive devices

Effect of scaling on electric field

TDDB testing

SiCN Cu SiCOH

Test at high fields to accelerate fails. Extrapolate to use conditions (low fields) using reliability model. Leading models for BEOL TDDB. "E-model" and "Sqrt-E model"

TDDB : E-model vs Sqrt-E model

TDDB mechanism; SiCOH dielectric

Outline

- Copper interconnect scaling
- Copper interconnect reliability
- Packaging
- Passive devices

Packaging challenges

Dicing; effect of dielectric

H. Zhao, D. Shi, IEEE/CPMT Elec. Man. Tech. Symp., 2003, p. 401.

Dicing damage depends on low-k dielectric

- More dicing damage for oxide low-k vs polymer low-k dielectrics
- More damage for porous low-k vs dense low-k dielectrics

Dicing damage depends on saw process

- Less damage for smaller diamond grit size and slower speed of cut
- Less damage for two-step dicing vs one-step dicing
 - •First cut removes all materials in top layer

Crack stop

A.V. Kearney et al., IITC Proc., 2007, p. 138.

k (≈0.7 mm)

Beam (typically Si)

D. Chumakov et al., IEEE Trans. emi. Manu., 2009, p G_c (J/m²) 8 2 8 **High fracture Crack is** DOXY E for die seal deflected Low fracture Fracture Energy, ⁰⁰ ⁰⁵ ⁰⁵ **E for ILD** 30 Die crackstop Deposited Metal Patterned Mag- 2.56 K X 2 µm Die Seal W146 - 44.68 um SEM ER Paske - 1884/18 of Crack Structure Path Structure Wafer Saw ო ი è Die Die 2 3 to Die Seal Si substrate Fracture energy measured double canilever beam Fracture energy incresses as crack approaches die seal Damage AFM measurement shows t crack deflects over die seal. metal Si substrate ebond length B (≈4 mm)

Edge seal ring

S.-H. Chen, M.-D. Ker, Microelec. Rel., 2005, p. 1311. L. Li et al., ECTC Proc., 2007, p. 755.

Purpose of edge seal ring: •Protect circuits from moisture and contamination.

Provide substrate contact.

1000h, 85°C / 85% RH

Flip chip package; low-k

T. Pan et al., IMAPS workshop, Dec. 2003 (<u>www.kns.com</u>)

Si BEOL C4

CTE mismatch between chip and carrier causes stress at edge of chip during thermal cycling.
Use underfill to reduce stress on C4.
Underfill with high modulus (> 8 GPa); less stress on C4, more stress on low-k
Underfill with low modulus (< 3 GPa); less stress on low-k, more stress on C4

Effect of Pb-free solder on low-k

T. Daubenspeck et al., Symp. Polymers, 2008.

- S. Kang et al., IBM J. Res. Dev., vol. 49, 607 (2005).
- V. Vasudevan et al., ECTC, 2007, p. 116.
- High stress on chip due to Pb-free solder
 - Higher modulus compared to Pb-based solder
 - Higher reflow temperature compared to Pbbased solder
- Crack propagation depends on following:
 - Low-k film properties: modulus and adhesion
 - Chip Size
 - Final Chip Level Pad/Via Module Design
 - Solder Bump; Dimension, Type, orientation
 - Chip-Join Processes
 - Package Laminate structure

solder	melting	Young's
	point	modulus
Sn/37%Pb	183°C	39 GPa
Sn/3.5%Ag	221°C	51 GPa
Sn/3%Ag/0.5%Cu	217°C	51 GPa
Sn/0.7%Cu	227°C	59 GPa

Electromigration in solder

	<u></u>				
T XX7 NT 1 TZ NT (D) T 1 (P	metal	melting	373 [°] K/ T _{melt}	diffusivity @ 100°C	
J.W. Nah, K.N. Tu, Lead-free Tech Workshop 2005		point			
reen. workshop, 2005	Cu	1356°K	0.275	$D_{surface} = 10^{-12} \text{ cm}^2/\text{sec}$	
	AI	933°K	0.4	$D_{g.b.} = 6x10^{-11} \text{ cm}^2/\text{sec}$	
	Pb	600°K	0.62	$D_{\text{bulk}} = 6 \times 10^{-13} \text{ cm}^2/\text{sec}$	
SH. Chae et al., ECTC Proc., 2007, p. 1442.	PbSn	456°K	0.82	$D_{bulk} = 2x10^{-9} \text{ cm}^2/\text{sec}$	
(a) (b) $(cu \cup BM$ $(cu_{6}Sn_{5})$ (b) $(cu_{6}Sn_{5})$ $(cu \cup BM$ (b) $(cu \cup BM$ $(cu \cup Bn)$ (b) $(cu \cup BM)$ $(cu \cup BM)$ (b) $(cu \cup BM)$	Void Void n ₄	Cur Ni ₃ Sn ₄ 50 h 10 μm 250 h 10 μm	rent density that For Al or Cu, ~ 1 For solder, ~ 10 ³ • High diffusion • Solid state rea • Current crow Si Die Cu UBM Sn-3.5Ag Cu Organic Substrate	causes a fail: 0 ⁵ or 10 ⁶ A/cm2 or 10 ⁴ A/cm2 ty (low melting point rather than inteface or g.b. ctions with barrier ding Cu trace Si Die ILD Ni UBM Sn-3.5Ag Cu Organic Substrate	

Outline

- Copper interconnect scaling
- Copper interconnect reliability
- Packaging TSV
- Passive devices

E D B C Long Global wire shorter wire B C D C Long Global wire

> Replace long 2D wires with short 3D wires. •Reduce delay, cross-talk, power • Need TSV size < 5 um

Enable integration of heterogeneous devices •Memory, logic, sensors, etc. • Need TSV size of 10 - 50 um

Small form factor •Need TSV size 50 – 100 um

Through-silicon via process options

P. Leduc et al., IITC, 2007, p. 210.

"Via last process". •Build FEOL + BEOL. •Thinning •SiO₂ bonding. •TSV

Low temp process required. Consumes BEOL wiring area Wafer-wafer bonding required "Easy" bonding process. P. De Moor et al., MRS Proc., vol. 970, 2007.

"Via first (after contact) process". •Build FEOL

- TSV
- •Build BEOL
- •Thinning
- Cu-Cu bonding

Difficult bonding process. Process must be compatible with FEOL Does not consume BEOL area Chip-wafer bonding is possible

TSV process flow (via first)

T. Mitsuhashi et al., MRS Proc., vol. 970, 2007.

Die stacking vs wafer stacking

K. Sakuma et al., ECTC, 2008, p. 18.

Wafer stacking:

High throughput.

Need high yielding die (>90%) Need same die size + wafer size.

Die stacking:

Lower throughput.

Sort + build known good die. Different die size and wafer size is OK.

3D IC challenges

P. Leduc, Metrology for Nanoelectronics, 2007.

- Process
 - High through-put via etch and fill
 - Wafer Alignment and bonding
 - Si thinning
 - Thin wafer handling
- Test
 - Test before bonding?
- Design methodology
- Thermal management
 - Special cooling?
- Reliability
 - TSV electrical contact

Outline

- Copper interconnect scaling
- Copper interconnect reliability
- Packaging
- Passive devices

Resistors

resistor	sheet	tolerance	parasitic	temperature	ref.
	resistance		capacitance	linearity	
p+ polysilicon	200-300 ohm/sq	10-15%	0,1 fF/um ²	~ 20 ppm/ ^o C	[34]
TaN	140 ohm/sq	10%	0,03 fF/um ²	~730 ppm/ ^o C	[34]
	25 ohm/sq			0 ppm/ ^o C	[35]
	50 ohm/sq			500 ppm/°C	[35]
	100 ohm/sq			800 ppm/°C	[35]
SiCr	440 ohm/sq			100 ppm/°C	[35]

Advantages of polysilicon resistor:

- Low cost.
- Low TCR

Advantage of metal resistor:

• Low parasitic capacitance

TaN resistor:

- Compatible with Cu BEOL
- Resistance and TCR depends on nitrogen content.

Capacitors

capacitor	dielectric	capacitance	tolerance	voltage linearity	temperature linearity	ref.
MOS	SiO ₂	1.2 - 3.1 fF/um ⁻	10 - 15%	> 1000 ppm/V	20 - 50 ppm/°C	[34]
PIP	SiO ₂	1.6 fF/um ⁻	25%	> 2000 ppm/V	~20 ppm/°C	[34]
MIM	50 nm SiO ₂	0.7 fF/um ²	7%	< 25 ppm/V	~50 ppm/°C	[3,34]
MIM	50 nm SiN	1.35 fF/um ²	13%			[3]
MIM	33 nm SiN	2.1 fF/um ²	11%			[3]
MIM	Ta ₂ O ₅	3 fF/um ²		~ 100 ppm/V	84 ppm/°C	[36]
MIM	AI_2O_3	3 fF/um ²		~ 400 ppm/V	255 ppm/°C	[36]
MIM	25nm HfO ₂ -Al ₂ O ₃	6.6 fF/um ²		109 ppm/V	196 ppm/°C	[37]
MIM	13nm HfO ₂ -Al ₂ O ₃	13 fF/um ²		236 ppm/V	183 ppm/°C	[37]
VPP	90 nm node 7 metal layers	> 3 fF/um ²				[38]

Advantages of MOS capacitor:

- Low cost.
- High capacitance density

Advantages of MIM capacitor:

- Good voltage linearity
- High quality factor (low parasistic resistance).

MIM capacitor in Cu technology

C.H. Ng, C.-S. Ho, S.F. Chu, S.-C. Sun, IEEE Trans. Elec. Dev., 52, 1399 (2005).

(a) MIM in Al BEOL

Sources of energy loss for on-chip inductor

S. Jenei, S. Decoutere, S. Van Huylenbroeck, G. Vanhorebeek, B. Nauwelaers, Silicon Monolithic Integrated Circuits in RF Systems, 2001, p. 64.

Low frequency: resistive loss dominates (use thicker metal) High frequency: capacitive loss dominates (decouple from substrate)

56

Quality factor improvement

C.-H. Chen et al., IEDM Proc., 2003, p. 39.

Increase metal thickness

Y.-C. Wu et al., IEEE Elec. Dev. Lett., 2009, p. 383.

Use patterned ground shield (M1)

Conclusion

- Process integration
 - Porous low-k (k < 2.5) is very fragile → difficult processing</p>
 - Low final dielectric constant may not be achieved due to damage.
 - Air-gap is an alternative (but higher cost)
 - Process variation
 - Litho and etch control; CMP control and pattern density rules
- Reliability
 - For longer electromigration lifetime → Metal capping layers, metal alloys
 - Minimize fails from stress-induced voids → Redundant vias
 - Maximize TDDB lifetime → control line width variation, minimize polish damage

Conclusion

- Packaging
 - Minimize damage to low-k dielectric → optimize dicing, underfill, molding compound, layout.
 - Pb-free solder; must optimize solder composition, solder reflow, pad layout, and underfill.
 - Electromigration of solder: Use Cu pillars , reduce current crowding, optimize barrier layer metals.
- Passive devices for RF and mixed signal technology
 - Resistors: polysilicon (low cost, low TCR) vs TaN (low parasitic capacitance)
 - Capacitors: MOS (low cost, high capacitance density) vs MIM (good voltage linearity, high quality factor)
 - Inductors: Improve Q \rightarrow thick Cu and high resistivity substrate or ground shield .