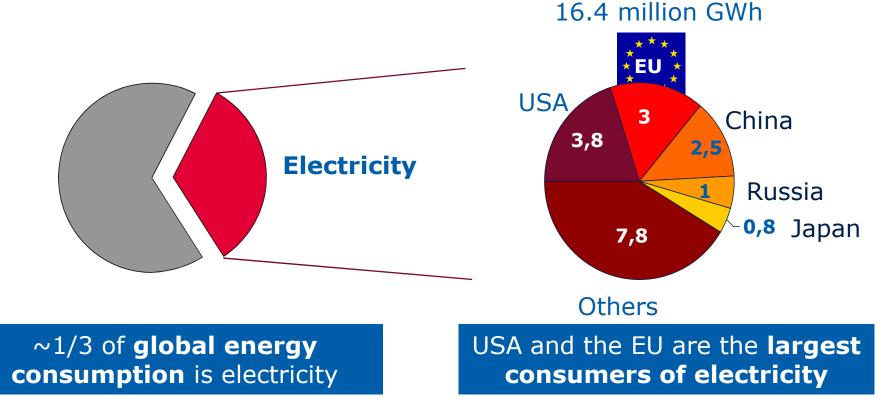
Energy Saving by Power Electronics in Household and Automotive Applications

Werner Weber, Infineon

Never stop thinking

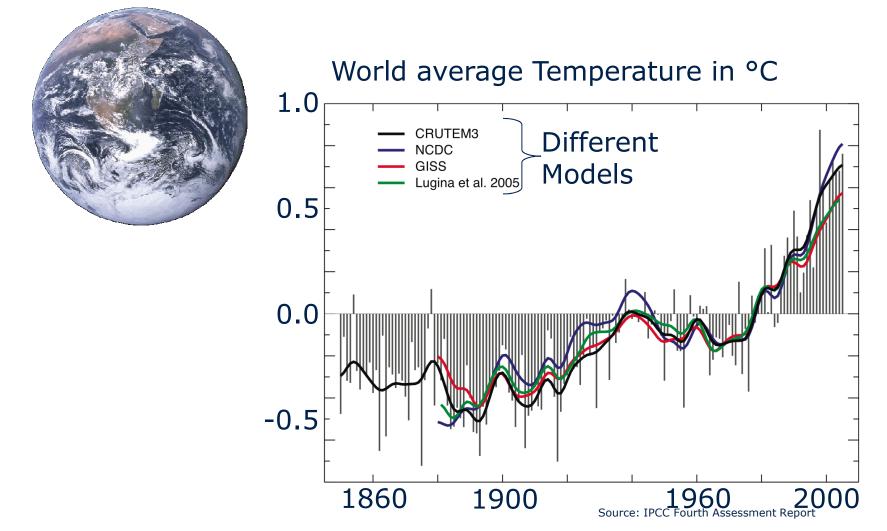
Agenda


- Introduction: global and regional energy consumption, its environmental consequences and ways to alleviate its effects
- The SmartPM Project
 - Motivation
 - organizational figures
 - Technologies & Demonstrators
- Examples of power saving by advanced power electronics
 - Household
 - □ Cars
- Brief comparison of different power devices

One third of the global energy use is based on electricity !

While debate continues over the environmental impact of different means of electricity production, its final form is relatively clean & it is one of the easiest means of transporting energy over long distances !

Global energy consumption 2006 Global electricity consumption 2006



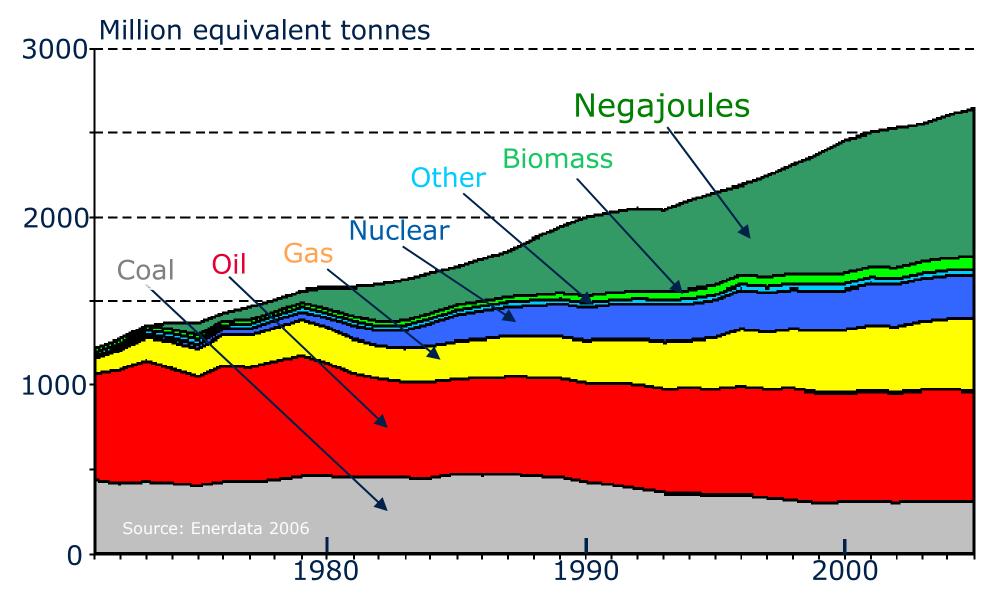
Sources: BP World Energy report; Energy Information Administration (EIA) – International Energy Annual 2006, Dec 2008 EU includes all 27 member states of the EU (http://europa.eu/abc/european_countries/index_en.htm)

Why Energy Efficiency?

Climate Change

Copyright © Infineon Technologies 2009. All rights reserved.

EU has actively adopted an integrated energy and climate change policy with clear targets



- cutting greenhouse gases by at least 20% of 1990 levels (30% if other developed countries commit to comparable cuts)
- increasing use of renewables (wind, solar, biomass, etc) to 20% of total energy production (currently ± 8.5%)
- cutting energy consumption by 20% of projected 2020 levels by improving energy efficiency

Source: http://ec.europa.eu/climateaction/eu_action/index_en.htm; December 2008

Energy Efficieny became the largest Energy Source in the EU

(infineon

Standard Setting Powers



European Minimum Standards related to ICT:

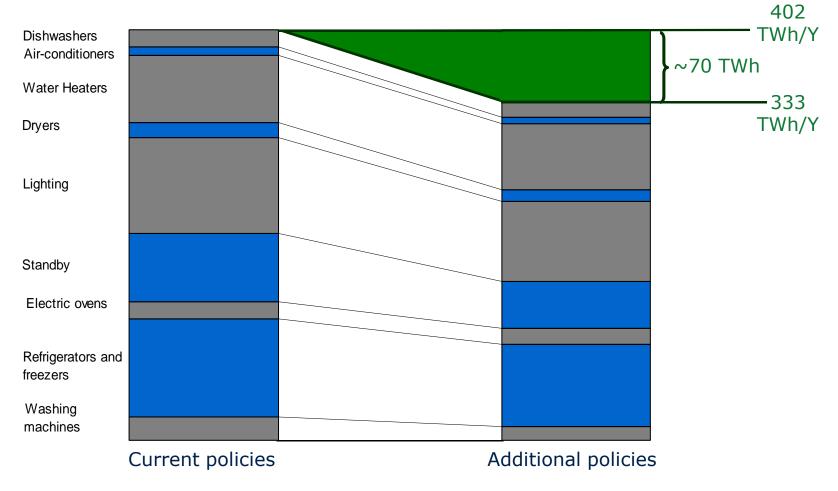
Stand-by and off-mode losses	Adopted
Simple set-top boxes	Adopted
External power supplies	Pending
Televisions	Adopted
Computers	Pending
Imaging equipment	Pending
Complex set- top boxes	Pending

A big portion of the energy consumed is LOST as heat, along the complete supply chain

Copyright $\ensuremath{\textcircled{C}}$ Infineon Technologies 2009. All rights reserved.

^{05.03}is⁰about 60%!

Significant saving potentials using microelectronics are possible today !


pe)	Electricity consumption			Saving potential	Key technology
Consumers electrical energy (Europe)	Consumer power supply: - stand-by, - active mode,	Others 18%	- stand-by - active	>90% >>1%	CoolMOS [™] , SiC Smart control ICs CoolSET [™]
	Computing power supply, - stand-by, active mode,	Information & Comm. 12%	80+ / 90+	>>1%	CoolMOS [™] , SiC, Smart control ICs, Low cost µC
	EC-Ballast Daylight dimming HID, LED,	Lighting 15%	Electronic control	>25%	CoolMOS [™] Smart ballast ICs Low cost µC
	Factory automation, Process engineering, Heavy industry, Light industry,		Variable Speed Drive (VSD)	050/ 400/	IGBTs Modules
	Transportation: Train, bus, car,	Motors 55%	VSD + Bi-directional energy flow	25% >40%	CoolMOS [™] Optimized µC 8 bit / 16 bit / 32 bit
	Home appliance: Fridge, washing machine, Air conditioning,		VSD		

Sources: ZVEI, Infineon, 2008

Saving Potential per Segment in Europe

- About 70 TWh per year can be saved in European households
 - With additional policies
 - With current available technologies

Sources: Wai 2004, Kem 2004; Joint Research Center IES, Status report 2004

Motivation Smart Power Management in Home and Health

- Energy consumption is predicted to double in the coming 20 years, as so will the CO₂ emissions
- The political, social and technical challenge of the next decade is, to achieve efficient use of energy and reduce energy consumption by at least 30%
- The political goal is, to reduce Europe's dependence on energy suppliers and increase economic competitiveness by creating new market sectors.
- The target of the project SmartPM is, to develop applicationspecific, efficiency-optimized semiconductor power technologies enabling the deployment of intelligent systems, that can save up to 25 % of electrical energy consumption without losing performance, comfort and safety

The research leading to these results has received funding from the ENIAC Joint Undertaking under grant agreement n° 120008 and from national programs/funding authorities German Federal Ministry of Education and Research (BMBF); the Belgian IWT; the French Ministère de l'Economie, des Finances et de l'Industrie; Secrétariat d'Etat à l'Industrie (STSI); Enterprise Ireland; the Italian Ministero Istruzione Università Ricerca; APRE Agenzia per la Promozione della Ricerca Europea; the Dutch SenterNovem; the Research Council of Norway; the Spanish DGI-Ministerio de Educación y Ciencia; and the Swedish Vinnova. SmartPM Consortium

18 partners under the leadership of Infineon

News Release of the European Technology Cooperation "SmartPM"

News Release/Presseinformation

European Technology Cooperation "SmartPM" for Energy Savings in Home Appliances, Healthcare and Medical Equipment Aims at Reduction of Electricity Wastage to a Minimum; Under Infineon Project Coordination

Neubiberg, Germany – September 8, 2009 – As awareness increases about climate change, stringent emission controls, dwindling energy resources and a rising demand for energy, it is more important than ever that the available electrical energy is consumed efficiently. Supporting this approach, together with 17 European partner companies Infineon Technologies (FSE: IFX / OTCQX: IFNNY) has formed the technology cooperation SmartPM (Smart Power Management in Home and Health) to bring down electrical waste to a minimum in home appliances, power supplies and in healthcare and medical equipment. Under the project coordination of Infineon, the companies are collaborating to significantly increase energy efficiency savings in

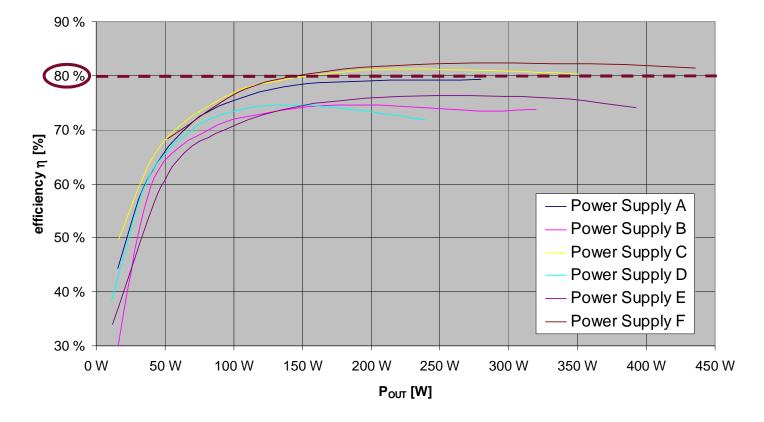
organizational data

- Start of Project by EU: Feb. 2009
- End of Project: Jan. 2012
- Total Project budget: € 19.8 Mio
- Total funding (partly national, partly EU): € 10.3 Mio
- 18 partners from 9 European countries including Belgium, France, Germany, Ireland, Italy, the Netherlands, Norway, Spain and Sweden

- SmartPM's research fields are innovative system architectures and circuits, new components, efficient power electronic technologies and innovative module, interconnect and assembly technologies
- Technologies investigated are Si, SOI, and SiC
- Voltage ranges include
 - < 100V (low voltage)</pre>
 - □ 120 400 V (net voltage)
 - $\Box > 1000V$ (high voltage)
- Various demonstrators are to be implemented in SmartPM as discussed below

Demonstrators

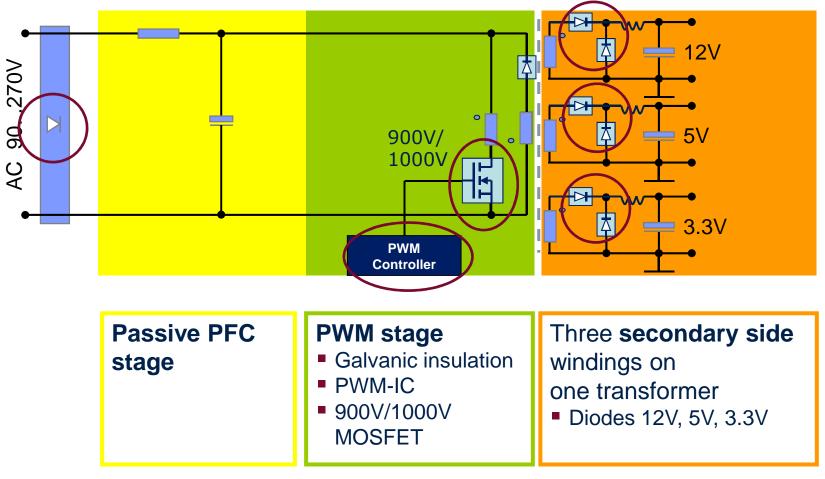
- I. Power saving in TV by novel circuits and control (Philips NL)
- 2. Pulse Width Modulator for Power Applications (Telefunken)
- 3. Highly integrated intelligent power module for Motor Drives (HI2PM) (Infineon)
- 4. High voltage rectifier for X-Ray imaging (Philips D)
- 5. High voltage Grid switch for X-Ray tubes (Philips D)
- 6. AC/DC Power supply for embedded PC's (Kontron)
- 7. Ultrasound Transceiver, component level (GEVU)


Examples for energy savings

- reducing standby losses,
- On-current in data centers and PCs
- AC/AC, AC/DC and DC/AC conversion for energy generation and distribution
- Power saving in automotive applications

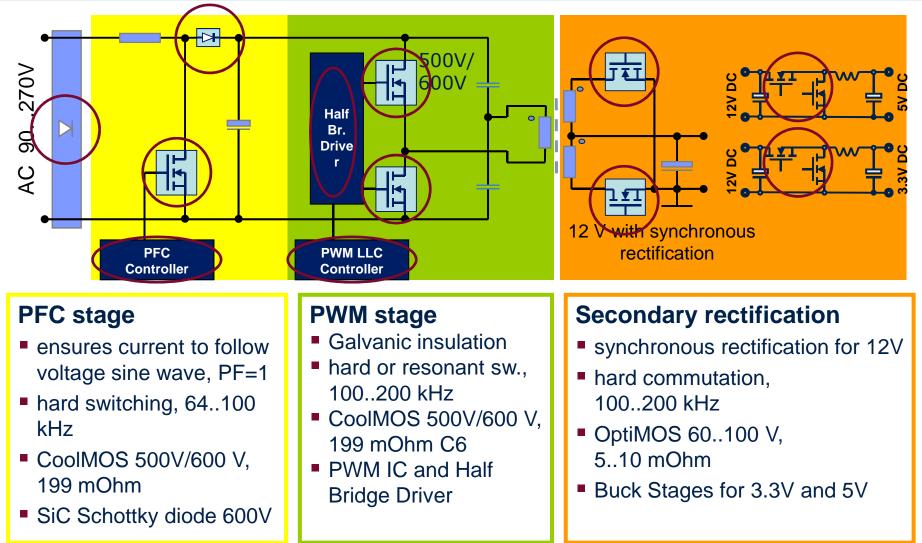
Let's take the example of PC power supplies...

Conventional power supplies achieve efficiency of around 70%-80%



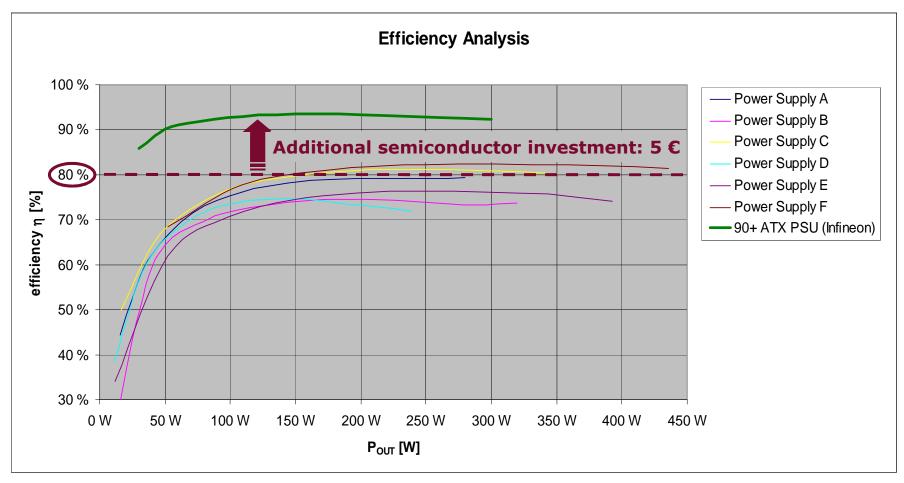
infineon

They typically use single transistor forward topology with one power MOSFET & some diodes



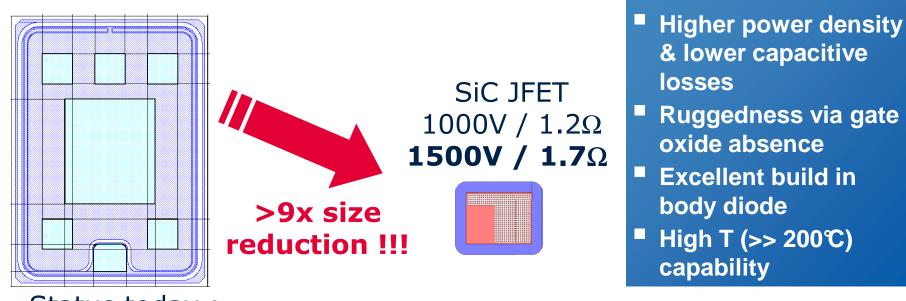
PFC=Power Factor Correction PWM=Pulse Width Modulation

Indicates Power Semiconductor content


However, with the use of new topologies on primary and secondary side ...

Indicates Power Semiconductor content

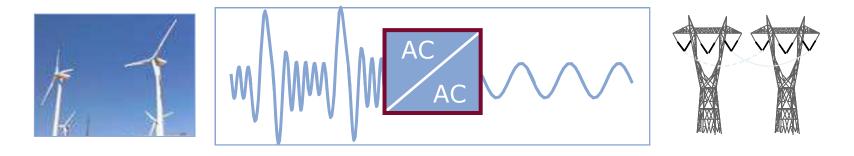
... we can achieve up to 10% increase in efficiency to find the second second


* Infineon Estimation at System level for a 300W power supply

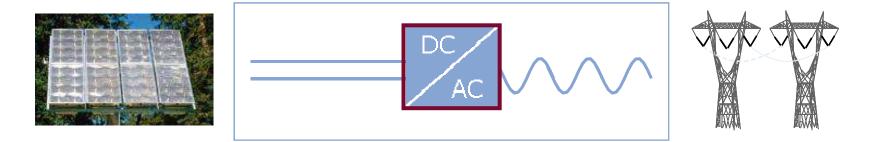
Further potential exists with new devices like SiC to increase efficiency & power density !

SiC JFET benefits:

CoolMOS 1000V / 1.2Ω

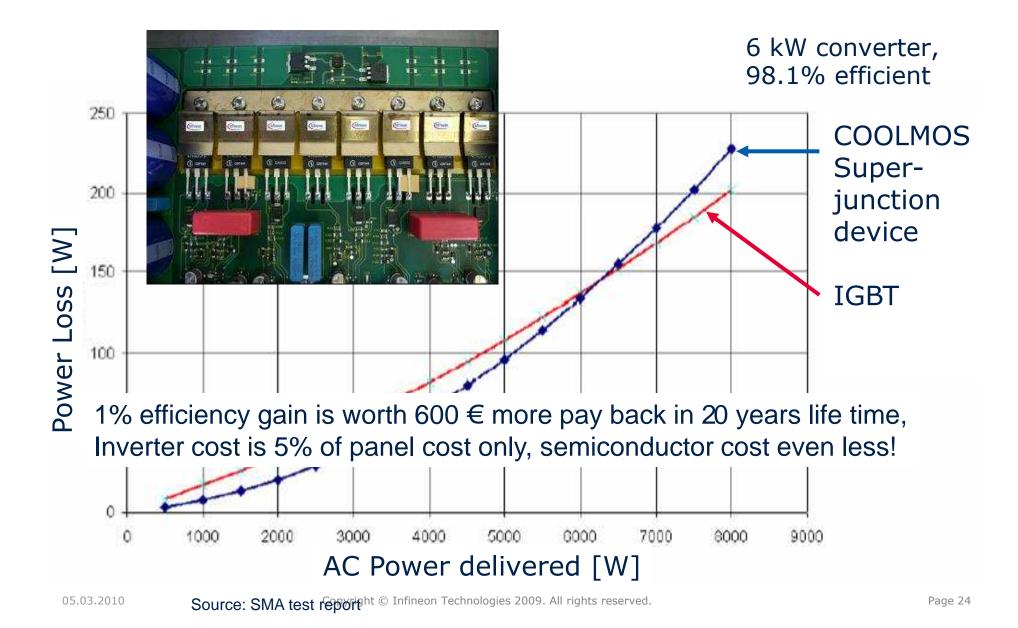


Status today :


- → SiC switch is already cost competitive with Si MOSFET technology for 1200V and above !
- Within the next 2-3 years, SiC switches should be competitive down to the 600V level!

Converters driven by microelectronic components enable excellent grid coupling

Wind Power: High efficiency coupling to grid

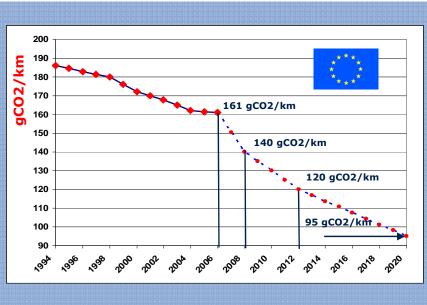


Solar Power: Direct current is delivered by solar panels

Use of latest generation of SJ devices results in highest efficiency in photovoltaic converters !

Global CO₂ Targets

CAFE May 2nd 2008 Cars + LD: 35 mpg by 2020

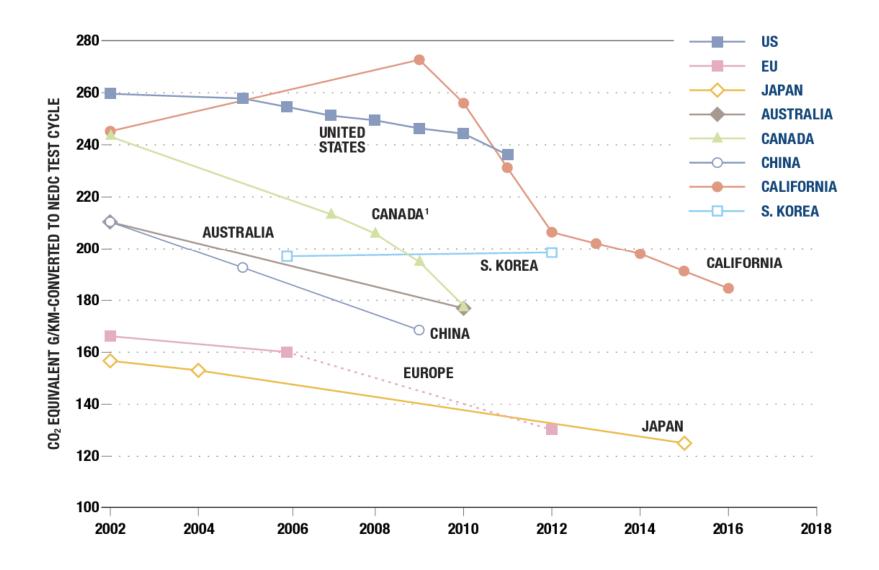

EU Dec. 17th 2008 Cars: 95gCO₂/km by 2020

Overall tax: Car, Fuel and CO2 -On the Fuel ($\approx 90 \in \text{per gCO2/km}$) -On the Car ($\approx 30 \in \text{per gCO2/km}$) -On the OEM ($\approx 95 \in \text{per gCO2/km}$) -On the CO2 ($\approx 20 \in \text{per tone CO2}$)

Car running 10 years 16.000 km/y or 10.000 miles/y

Conversion table for regular gasoline engine

gCO2/km	155	140	130	120	110	100	95
L / 100km	6.72	6.08	5.65	5.21	4.78	4.34	4,13
MPG	35.0	38.7	41.7	45.1	49.2	54.2	57.0



Barrel Price from June 2008 to June 2009

Planned CO₂ Reduction Measures

Semiconductor Contributes to Sustainable Mobility

Engine

More precise injection and more efficient throttle control lead to less petrol consumption

Air Drag

Improvement of air flow

Transmission

Aim is to minimize energy losses when changing gears

Hybridization

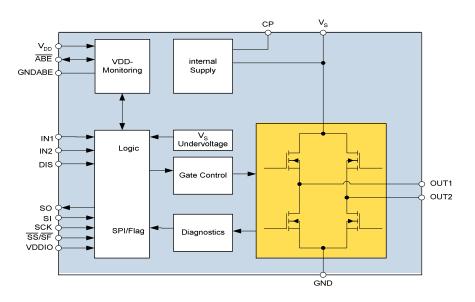
Efficiently use electricity to power the car

Energy Management

Use the right quantity of energy only when it is needed

WEIGHT

Light weight System approach


Friction Reduction

Tire pressure control reduces friction thereby reducing consumption

Energy Efficiency

Use minimum energy for a certain function

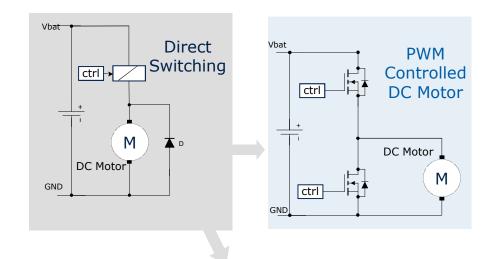
High Current H-bridges for DC-Motor Control in Powertrain Applications

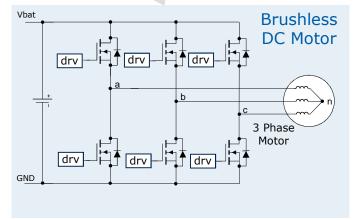
Features:

- **Power Stages up to 300** m Ω
- Slow rate & current limitation program module
- Control in Dual Half Bridge Mode
- 8bit SPI Register
- **...**

Applications examples:

- Electronic Throttle Control (ETC)
- Exhaust Gas Recirculation (EGR)
- Turbo Charger Waste Gate
- Variable Turbo Geometry (VTG)
- Swirl and Tumble Flaps
- Variable Intake Manifold


İnfineon


Power on Demand PWM Regulated Fuel Pump

- Demand controlled by PWM
- Reduced Average Power Consumption up to 40 %
- Technologies available

Total Power Saving ~ 80 W

CO_2 -reduction ~ 1.9 g/km

Energy Management: Electric Water Pump

Uncontrolled

Water pump directly driven from engine

PWM controlled

EC-motor drives water pump (8 bit µC / B6-bridge / package / PWM interface)

- Main benefit
 Improved thermal control of engine
 + better efficiency of pump
- Feasibility

available technology, complexity: low

CO₂ Benefits:

Benefit equivalent Estimated additional costs Reduced fuel consumption CO₂-reduction ~ 300W el.
~ 55€
~ 0.3l / 100km
~ 7.1 g/km

Engine Management Alternator

Conventional

Rectification with diodes

Active rectified

Replacement of diodes by B6-MOSFET-bridge (16 bit μ C / B6-bridge / package / LIN)

Main benefit	Efficiency improvement of 1 losses, calculated with 1.0 k continuous output power		duced diode
Feasibility	available technology, complexity: medium (very high currents)	Source : Valeo	

CO₂ Benefits:

Loss improvement Estimated additional costs Reduced fuel consumption CO₂-reduction ~ 100W el.
~ 60€
~ 0.1l / 100km
~ 2.4 g/km

Energy Management: Electric Power Steering

Uncontrolled

Hydraulic power steering with overpressure valve

PWM controlled

EC-motor with field oriented control (32 bit μ C / B6-bridge / Π -Filter / package / connectors)

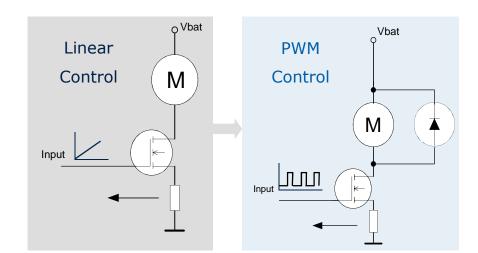
Main benefit Provides torque only when needed, power consumption reduced from 300 W to less then 50 W in average

> Available technology, complexity: medium (high currents)

CO2 Benefits:

Feasibility

Loss improvement Estimated additional costs Reduced fuel consumption CO₂-reduction ~ 250W el.
~ 60€
~ 0.25l / 100km
~ 5.9 g/km



HVAC System Has Huge Saving Potential PWM Controlled Blower Fan

- Blower Control via PWM
- Drastically Reduced Power Losses
- Technologies available

Comparison against linear controlled motor with huge power losses

Source : Continental

CO_2 -reduction ~ 1.9 g/km

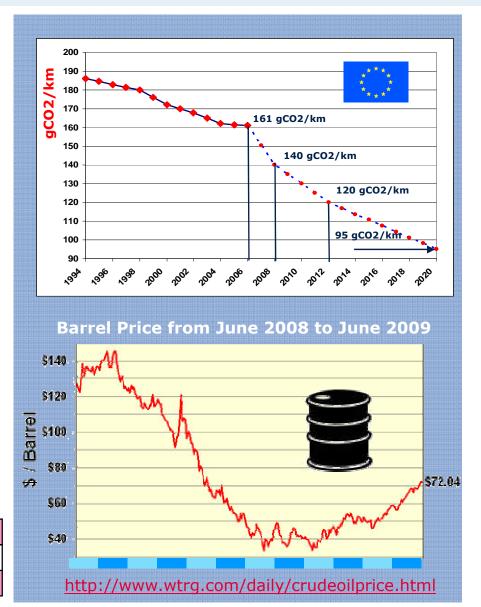
Overview of CO₂-Reduction Examples

Application	CO ₂ -reduction
	[g CO ₂ / km]
PWM for bulbs	0.8
Use of LED	1.2
Infotainment	1.2
Fuel pump	1.9
HVAC Fan	1.9
Alternator	2.4
EPS	5.9
Water pump	7.1
	•••

Total electric power saving	~1000 W
Total improvement of CO ₂ -emission	~23 g/km
Total CO ₂ -saving per car lifetime	~3.3 t

Global CO₂ Targets

CAFE May 2nd 2008 Cars + LD: 35 mpg by 2020



EU Dec. 17th 2008 Cars: 95gCO₂/km by 2020

Overall tax: Car, Fuel and CO2 -On the Fuel ($\approx 90 \in \text{per gCO2/km}$) -On the Car ($\approx 30 \in \text{per gCO2/km}$) -On the OEM ($\approx 95 \in \text{per gCO2/km}$) -On the CO2 ($\approx 20 \in \text{per tone CO2}$)

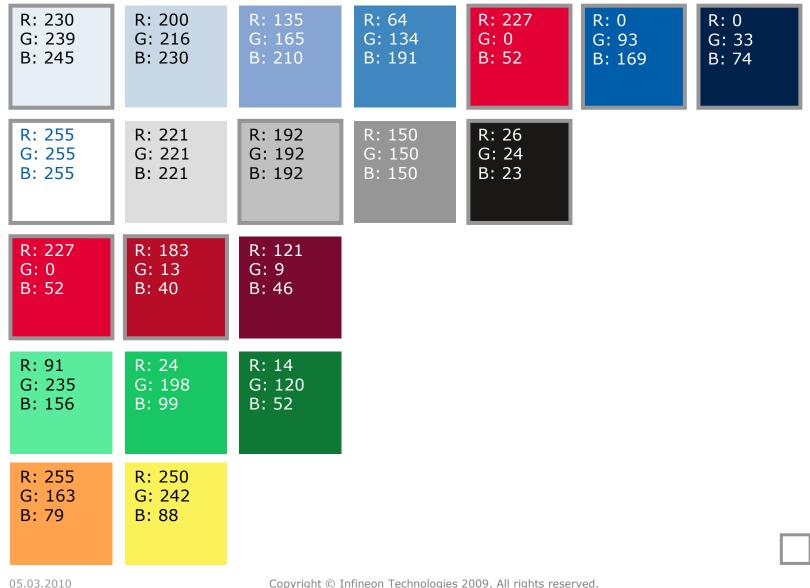
Car running 10 years 16.000 km/y or 10.000 miles/y

gCO2/km	155	140	130	120	110	100	95
L / 100km	6.72	6.08	5.65	5.21	4.78	4.34	4,13
MPG	35.0	38.7	41.7	45.1	49.2	54.2	57.0

Overview on device concepts

	MOSFET	IGBT	SiC-JFET	Comment
Voltage classes	20900V	6006500V	6001700V	overlapping in 600900V classes
@ Vgs=0V	normally off	normally off	normally on	
Conductivity	majority carriers only	bipolar conductivity	majority carriers only	
Forward mode	ohmic	knee voltage around 1V	ohmic	low voltage drop for MOSFET and JFET
Conduction losses	I ² xR _{DSon}	~ IxV _{CEsat}	I ² xR _{DSon}	MOSFET and JFET allow low losses
Switching losses	extremely low	medium	extremely low	dominated by bipolar plasma in IGBT
Capacitive losses	medium	low	ultra low	
Cost	medium	low	high	SiC presently introduced to market

Conclusion


CO₂ – Reducing Emissions is a worldwide obligation for the sake of our future

 CO_2 – Reducing Emissions will be driven by many small steps in a variety of applications

Semiconductors are the enabler Let us drive our future

The Color System

Copyright © Infineon Technologies 2009. All rights reserved.

Primary Colors

We commit. We innovate. We partner. We create value.

Never stop thinking