"Successful Entrepreneurship in a Changing Fabless Landscape"

Rakesh Kumar, Ph.D., Fellow IEEE

October 7, 2010 Denver, CO.

rakesh@tcxinc.com

+1 858.945.3758

Semiconductors drive the Electronics food chain

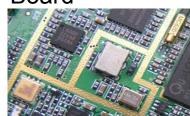
...but the industry is at a cross-road atomistic levels business considerations dominate

Macro Trends:

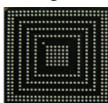
Market demand continues to drive:

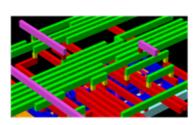
Chip Complexity↑, Performance↑, Cost ↓ and Power ↓

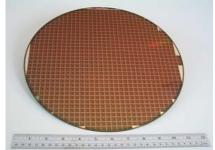
It was that "Real men must have fabs" - but now...


...over 1300 Fabless companies ...contribute over 20% of WW Semiconductor Revenue ...strong Eco-system available

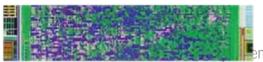
Process


Connectivity
Social Media
Teenagers

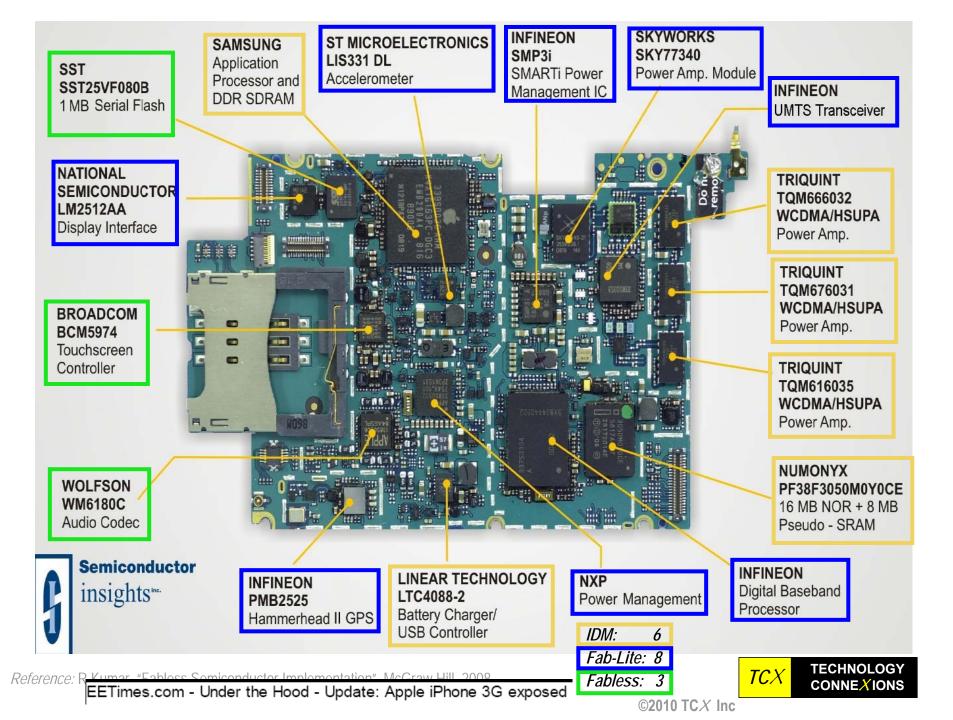




Package



Design



entation", McGraw Hill, 2008.

What you will learn today

- Semiconductor industry trends and fabless entrepreneurial perspectives

What we will NOT do today

- Design new circuits
- Invent new process technology

My background

- Over 36 years in semiconductor industry Motorola, Unisys, Cadence, TCX
 - Over half in fabless companies
 - Outsourced technology and products for ~30 years
 - Consulting services for ~20 emerging and established companies over ~10 years
- VP, and President-elect of IEEE Solid-State Circuits Society
 - JSSC continues to be the #1 in downloads
 - SSCS sponsors/manages 4 major conferences, and technically co-sponsors many others

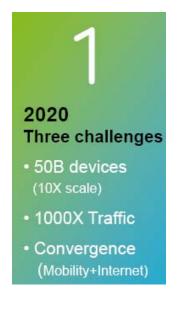
Successful Entrepreneurship in a changing Fabless Landscape

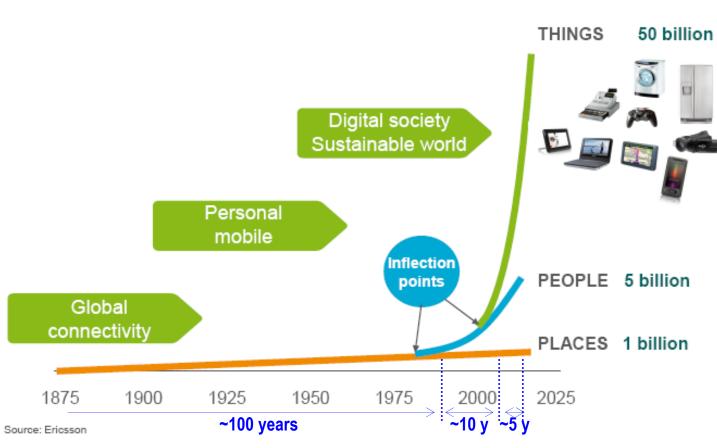
- Semiconductor Landscape changes
 - Macro Trends
 - Product and Business drivers
- Entrepreneurship success elements
 - Lifecycle and development schedule
 - Product positioning
 - Technology selection
 - Cost management
 - Supply chain management

Expanding Applications Driving Semiconductor Landscape

... Higher volume projections for widespread connectivity, communications,...

PC's, Internet Mobile Computing

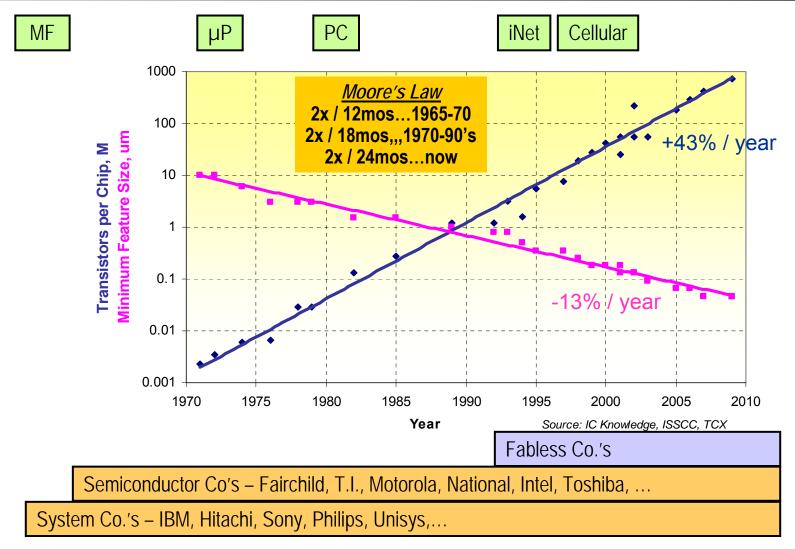

Mobile Wireless Voice, Data, Multimedia Social Media...



Places, Things
Mobile Health
Appliance Configuration/Control
Interact
Digital Home, ...

Drivers: Memory, μP Mobile Processors
Integrated SoC/SiP,
Analog, RF, PM, ...
Unit Volume: 1χ 10χ >100χ

Ericsson's view of industry trends / inflection points



Ref: Joshipura, GSA Expo, September 26, 2010

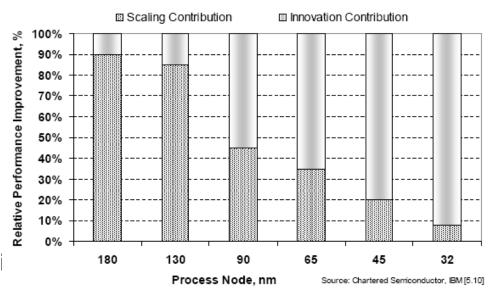
More Moore

... Transistor complexities have doubled every 2 years

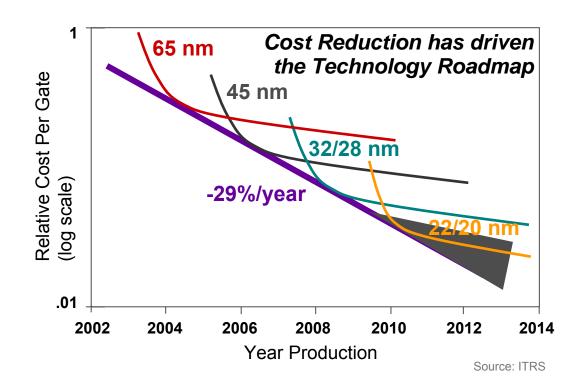
Technology and Business Challenges

- Process Technology Challenges
 - Lithography
 - New Materials and Processes
 - Strained Si, Lo K, Hi-K MG,...
 - New Device Structures
 - FinFETs...

— ...


- Design and Co-design Challenges
 - Managing leakage and Power dissi
 - DFM

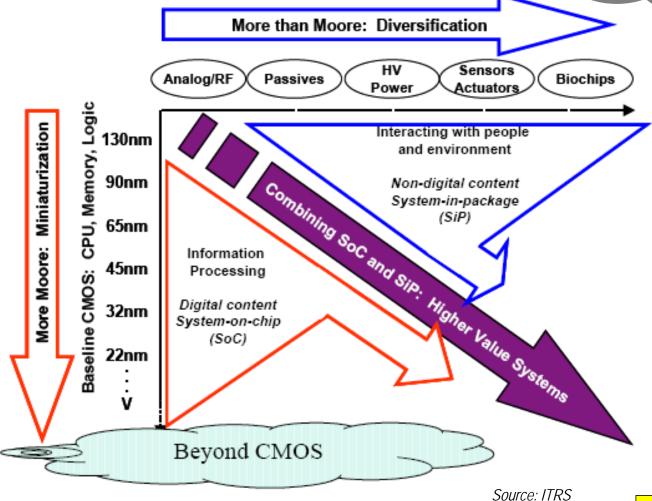
– ..


- Large investment capital, process cost, design cost...
- Few players users, fabs,...

Continued Scaling will be dominated by solutions to Business challenges ...expect Technical solutions to be available when needed!

Continued Moore Scaling is threatened ...

...cost effectiveness is an issue



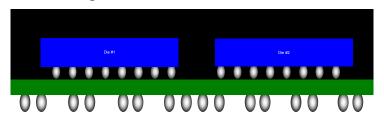
Litho, Optimized Process solutions & DD reduction are a must for continued scaling economics

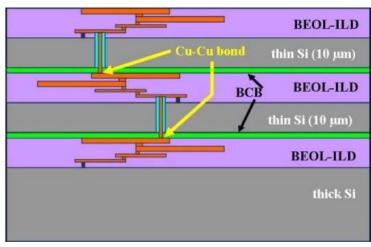
"More than Moore" activities

....positioned for continued industry growth

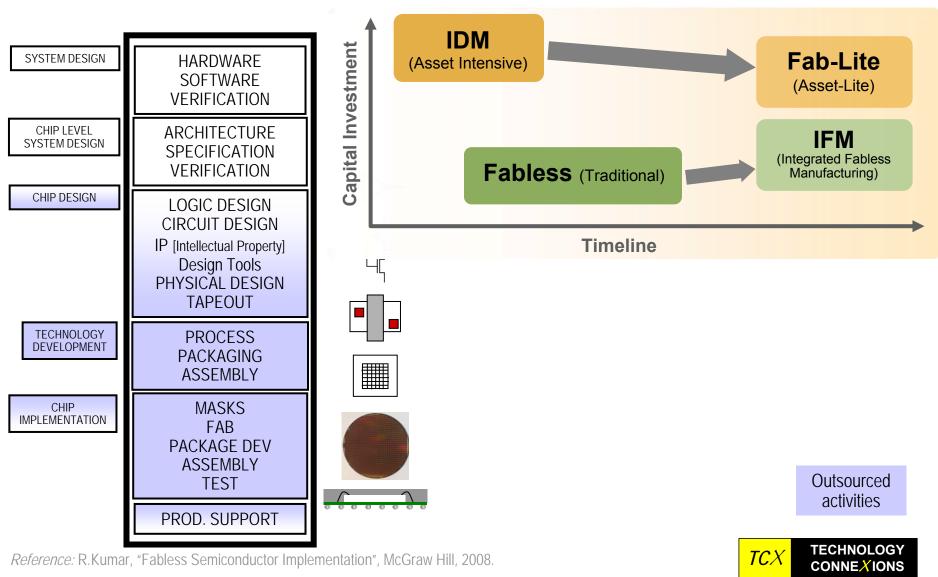
Innovation & entrepreneurial opportunities

"More than Moore" examples - Innovative Packaging


Stacked Chips


Stacked Packages

Side-by-Side


3D Stacked IC's

Source: IMEC

IDM approach now practiced at fewer companies

....has given way to increased outsourcing, and a fabless supply chain

Fabless model generates results

... CAGR consistently better than semiconductor

Over the last 20 years, Fabless CAGR = 28% while Semiconductor CAGR = 8%

QCT Revenue Leads the Fabless Industry ...use of an Integrated Fabless Model ("IFM") has been key

2009 Top 25 Fabless IC Suppliers

2009	2008	2007	C	Headquarters	2007	2008	%	2009	N Channe
Rank	Rank	Rank	Company		(\$M)	(\$M)	Change	(\$M)	% Change
1	1	1	Qualcomm	U.S.	5,619	6,477	15%	6,585	2%
2			AMD	U.S.	0	0	N/A	5,252	N/A
3	2	3	Broadcom	U.S.	3,754	4,449	19%	4,190	-6%
4	5	5	MediaTek	Taiwan	2,445	2,864	17%	3,500	22%
5	3	2	Nvidia	U.S.	3,979	3,660	-8%	3,135	-14%
6	4	4	Marvell	U.S.	2,830	3,055	8%	2,700	-12%
7	6	6	Xilinx	U.S.	1,810	1,906	5%	1,675	-12%
8	7	7	LSI Corp.	U.S.	1,779	1,795	1%	1,445	-19%
9	8	8	Altera	U.S.	1,264	1,367	8%	1,165	-15%
10	9	12	Avago	U.S.	820	905	10%	870	-4%
11	11	9	Novatek	Taiwan	1,099	829	-25%	819	-1%
12	10	10	Himax	Taiwan	918	833	-9%	685	-18%
13	16	15	Realtek	Taiwan	478	534	12%	615	15%
14	19	23	Mstar	Taiwan	378	454	20%	605	33%
15	12	11	CSR	Europe	849	695	-18%	600	-14%
16	13	14	QLogic	U.S.	585	663	13%	530	-20%
17	18	21	Atheros	U.S.	417	472	13%	530	12%
18	17	16	PMC-Sierra	U.S.	449	525	17%	495	-6%
19	15	20	MegaChips	Japan	420	535	27%	480	-10%
20	20	27	Silicon Labs	U.S.	338	416	23%	440	6%
21	21	19	Zoran	U.S.	445	380	-15%	345	-9%
22	22	24	SMSC	U.S.	374	352	-6%	280	-20%
23	25	33	Semtech	U.S.	257	270	5%	250	-7%
24	35	45	Ricktek	Taiwan	184	217	18%	244	12%
25	14	13	Conexant	U.S.	761	554	-27%	240	-57%

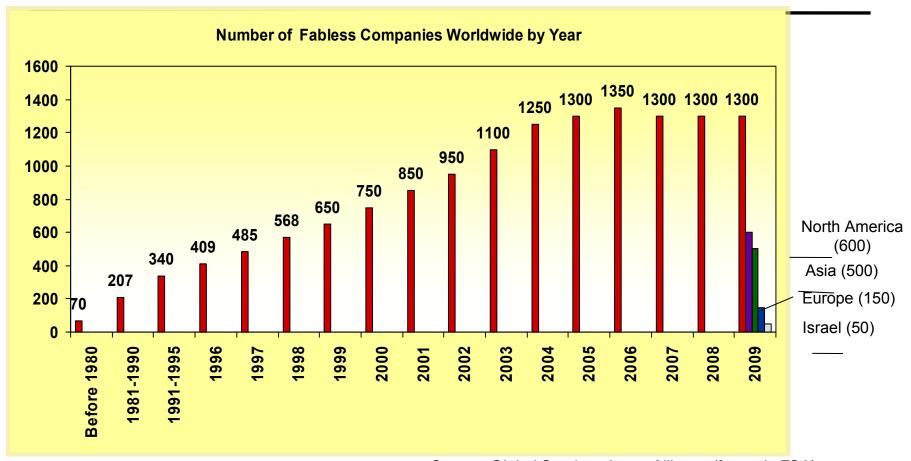
Source: IC Insights' Strategic Reviews Database

TCX TECHNOLOGY CONNEXIONS

2009 Top 20 Semiconductor Sales Leaders (\$M)...forecast

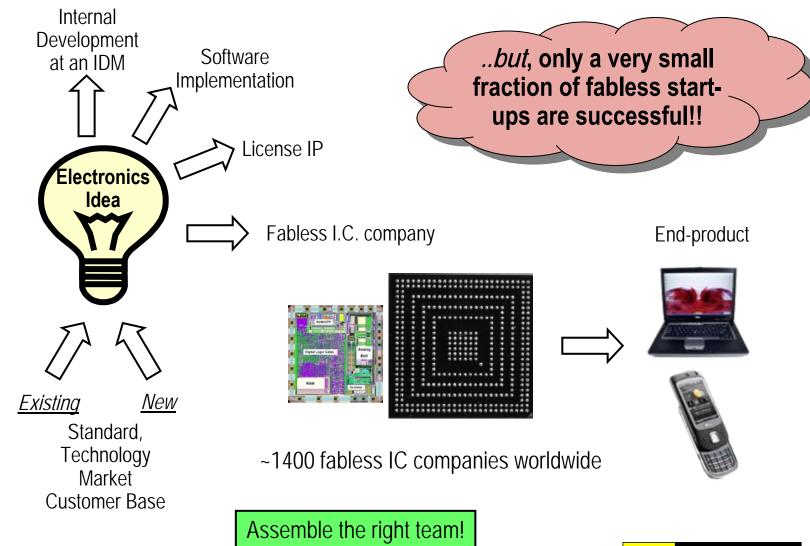
Preliminary WW Ranking of the Top 20 Suppliers of Semiconductors in 2009

(Ranking by Revenue in Millions of U.S. Dollars)


2008	2009		2008	2009	Percent	Percent
Rank	Rank	Company Name	Revenue	Revenue	Change	of Total
1	1	Intel	\$33,767	\$32,095	-5.0%	14.2%
2	2	Samsung Electronics	\$16,902	\$17,123	1.3%	7.6%
3	3	Toshiba	\$11,081	\$10,640	-4.0%	4.7%
4	4	Texas Instruments	\$11,068	\$9,612	-13.2%	4.2%
5	5	STMicroelectronics	\$10,325	\$8,400	-18.6%	3.7%
8	6	Qualcomm	\$6,477	\$6,475	0.0%	2.9%
9	7	Hynix	\$6,023	\$5,940	-1.4%	2.6%
6	8	Renesas Technology	\$7,017	\$5,664	-19.3%	2.5%
12	9	Advanced Micro Devices	\$5,455	\$5,038	-7.6%	2.2%
7	10	Sony	\$6,950	\$4,670	-32.8%	2.1%
11	11	NEC Electronics	\$5,826	\$4,403	-24.4%	1.9%
10	12	Infineon Technologies	\$5,954	\$4,340	-27.1%	1.9%
14	13	Broadcom	\$4,643	\$4,198	-9.6%	1.9%
16	14	Micron Technology	\$4,435	\$3,995	-9.9%	1.8%
24	15	MediaTek	\$2,896	\$3,524	21.7%	1.6%
19	16	Elpida Memory	\$3,599	\$3,498	-2.8%	1.5%
13	17	Freescale Semiconductor	\$4,966	\$3,344	-32.7%	1.5%
15	18	Panasonic Corporation	\$4,473	\$3,330	-25.6%	1.5%
17	19	NXP	\$4,055	\$3,247	-19.9%	1.4%
18	20	Sharp Electronics	\$3,607	\$2,886	-20.0%	1.3%
		Top 20 Companies	\$159,519	\$142,422	-10.7%	62.8%
es.		All Others	\$99,389	\$84,313	-15.2%	37.2%
		Total Semiconductor	\$258,908	\$226,735	-12.4%	100.0%

Source: iSuppli Nov. 2009

Worldwide Growth of Fabless Companies



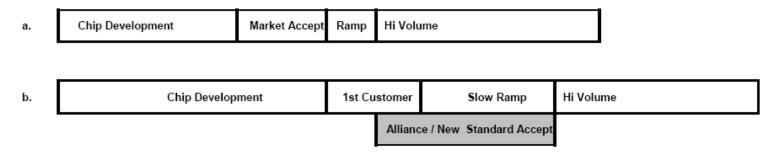
Source: Global Semiconductor Alliance (formerly FSA)

Fabless Industry pioneered by innovators with ideas, but without wafer fabs

The I.C. entrepreneurship creation

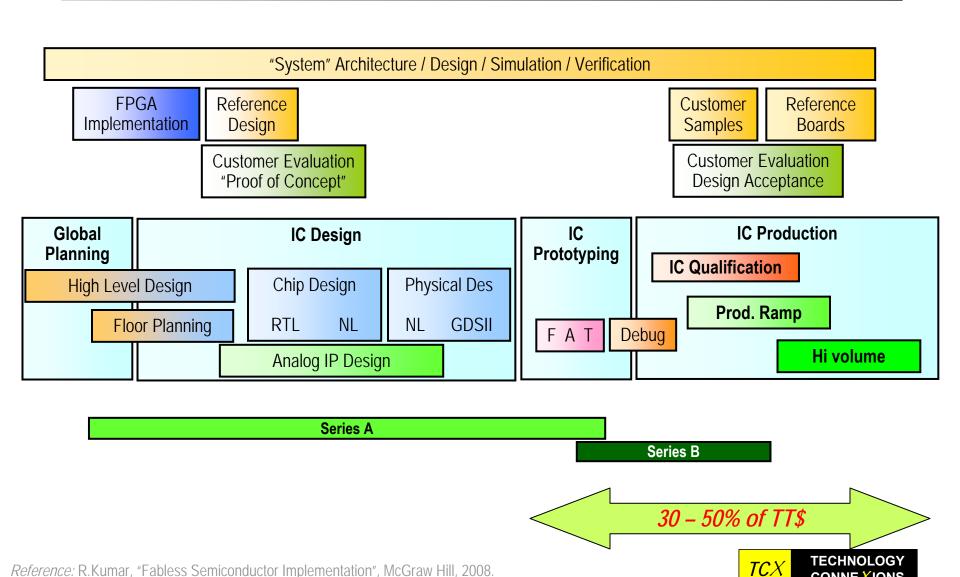
Top reasons for failure of fabless start-ups

Create your product as a "must-have" for the customer
Product Positioning
Differentiation

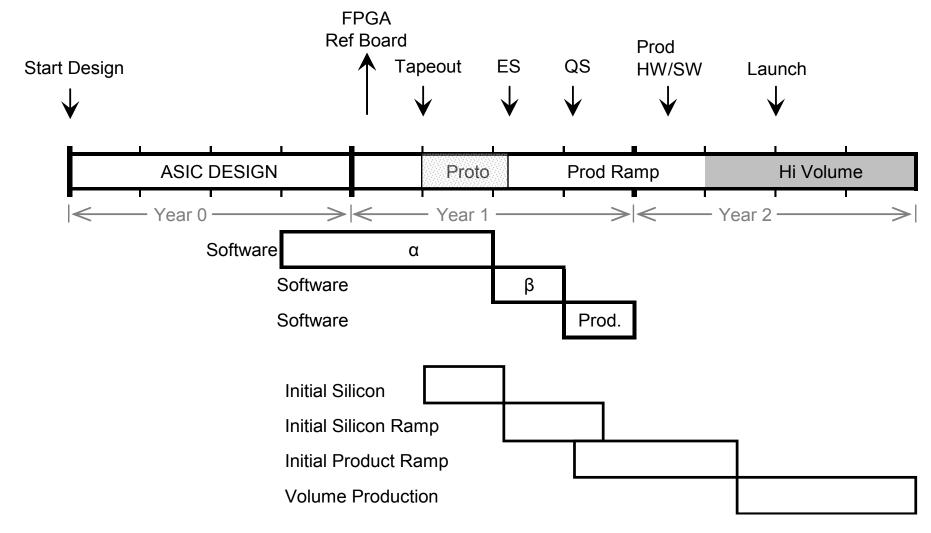

- No customer engagement until it's too late
- Not understanding and meeting customer expectations
- Overly aggressive product specifications
- The "kitchen-sink syndrome"
- Poor management of the Supply Chain

A systematic approach to planning and execution

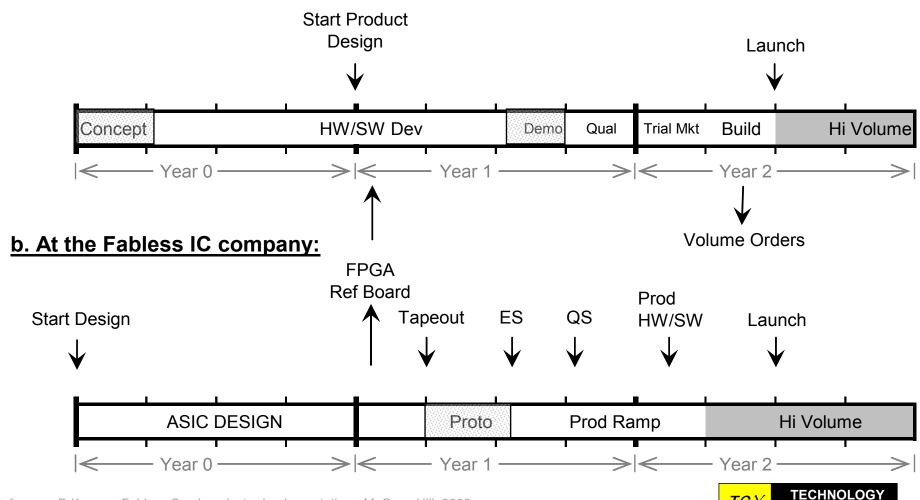
Success elements – product positioning


EXISTING	NEW			
Standard, market, customer base	Standard, market, customer base			
■Super-Integration	■Emerging standard			
■Problem solutions	■New features/capabilities			
■Evolutionary enhancements	■New interfaces			
– e.g. Cost reduction	■"Revolutionary" enhancements			

Will Impact Schedule, Technology Selection, Design Methodology,....


Lifecycle of a fabless IC company – activity highlites

CONNEXIONS


©2010 TCX Inc

Typical ASIC Development Cycle

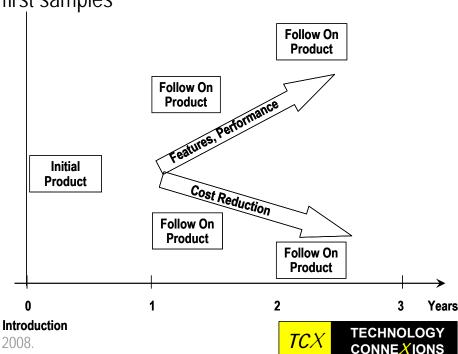
System vs. IC Development Cycle

a. At the System company:

CONNEXIONS

Success elements – product definition

- Judicious selection of features and specifications
- What are your product's differentiating features?
 - If process technology only....go back to the 'drawing board'!!
- Overly aggressive specifications (timing, gate density,....)

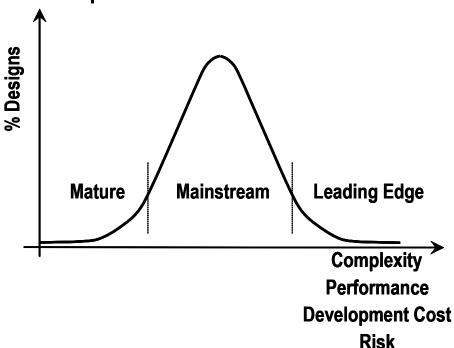


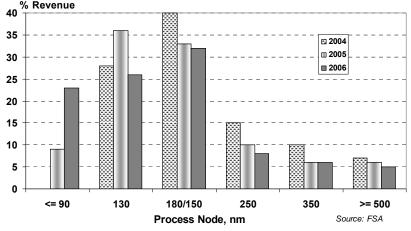
Show a Product Roadmap

on schedule

Establish credibility by delivering the first samples

Reference: R.Kumar, "Fabless Semiconductor Implementation", McGraw Hill, 2008.


©2010 TCX Inc


Success elements – technology selection

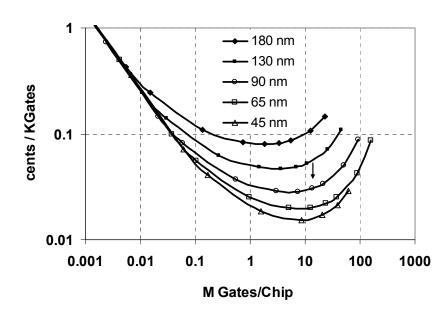
- Avoid using the newest technology (process, design, packaging, ...)
 - If that is the only way you can meet the specifications.....

Use the newest technology you can afford, and the oldest technology that lets you

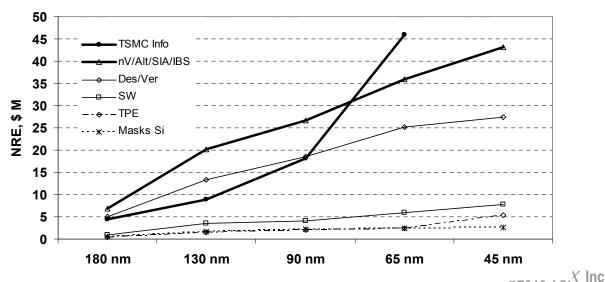
meet the specifications

Process Node Maturity								
	Mature		M	ainstrea	am	Leadir		
500	350	250	180	130	90	65	45	nm

TCX TECHNOLOGY CONNEXIONS


Success elements – supply chain selection

- Technical due diligence
- Business due diligence
 - Will they accept your business?
 - Confidentiality documents
 - Quotes
 - Firm up the commitments



Success elements – cost management

Unit cost optimization

Development cost optimization

Reference: R.Kumai

Success elements – other considerations

- Sourcing methodology FPGA, ASIC, COT,...
- Operations best practices legal, financial, production control, customer support,...
- Quality and reliability Quality Manual, build in quality from the start,...
- Schedule development and management
- Program management
 - Internal development
 - Management of the distributed supply chain

Summary and key take-aways

- Semiconductor industry continues to be the hub of the electronics revolution
 - As long as there are innovators, and...
 - Teenagers and other users...
 - This will continue to be an exciting and challenging industry
- Successful new product implementation can be a very rewarding experience
 - It's not for the faint hearted! Complex, but can be done!
- For entrepreneurs...

Best Technical idea ≠ Success

Create customer "must-have" through Product Differentiation

PLANNING EXECUTION EXECUTION

