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http://techresearch.intel.com/articles/None/1813.htm
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????: 
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Short-Reach Optical Communication 

Characteristics 

• High volume 

• High port density 

 

Requirements 

 CHEAP! 
– VCSEL lasers at l = 850nm 

– Multimode fiber 

 Integration 

 Low-power 
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Good recipe for CMOS! 



Optical Transceiver 
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I. Young et al, "Optical I/O technology for tera-scale computing," JSSC, Jan. 2010. 
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e.g. I. Young et al, "Optical I/O technology for tera-scale computing," JSSC, Jan. 2010. 
Analui et al, “A Fully Integrated 20-Gb/s Optoelectronic Transceiver Implemented in a 
Standard 0.13-mm CMOS SOI Technology,” JSSC, Dec. 2006. 
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High-Speed Photodetectors 
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Optical Absorption of Semiconductors 
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From: H. Zimmermann, Silicon Optoelectronic Integrated Circuits, Springer, 2004. 
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Absorption PDF of light at l = 850 nm 

Silicon Germanium 
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CMOS Photodetectors 
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Recombination 
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CMOS Photodetectors 

Slow-diffusing 
carriers 

 Large PD 
capacitance 

 Low 
responsivity 
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CMOS Photodetector Examples 

n+/p n-well/p 
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High Reverse Bias 
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e.g. 14.2-V reverse bias in S.-H. Huang & W.-Z. Chen, "A 10-Gbps CMOS single chip optical receiver with 2-D 
meshed spatially-modulated light detector," CICC, Sept. 2009 

 Fewer slow-
diffusing carriers 

Reduced CPD 
Potential for 

avalanche gain 
 Reliability 

concerns 
 Dual-supply or 

charge-pump 
required 



Impact of Reverse Bias Voltage 

Junction capacitance Intrinsic frequency response 
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Layout Considerations 
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More/Smaller strips: 
 Short diffusion times for 

the carriers to get to the 
contacts 

 Additional sidewall 
depletion regions for light 
absorption 

 
 

Few/Wider strips: 

 Less contact metal 
blocking light 

 Smaller CPD 

Similar tradeoffs arise between 1-D and 2-D contact arrays  



Diffusion-Shielded Photodetectors 
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2nd depletion region 

Similar effect provided by SOI 



Diffusion-Shielded Photodetectors 
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P. J. Lim et al, “A 3.3-V monolithic photodetector/CMOS preamplifier for 531 Mb/s optical data link applications,” ISSCC 1993 
T.K. Woodward & A.V. Krishnamoorthy, "1 Gbit/s CMOS photoreceiver with integrated detector operating at 850 nm," 
Electronics Letters, Jun 1998. 

Fewer slow-
diffusing 
carriers 

Can often be 
done without 
process 
modifications 

• Reduced DC 
responsivity 



Diffusion-Shielded Photodetector Example 

• n+/p junction is reverse-
biased and used as the 
active photodetector 

• p/n-well junction is 
reverse biased to collect 
and discard 
photocarriers generated 
far below the n+/p 
junction 
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IPD 
VDD 



Spatially Modulated Photodetectors 
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Spatially Modulated Photodetectors 
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Kuijk et al, "Spatially modulated light detector in CMOS with sense-amplifier receiver operating at 180 Mb/s for 
optical data link applications and parallel optical interconnects between chips," IEEE J. Sel. Top. Quant. Elec., 
Nov/Dec 1998. 

 Fewer slow-
diffusing carriers 

Can be done in 
any process 

Reduced CPD 

 ½ of the light is 
reflected 

 Requires excellent 
CMRR amplifiers 



Typical CMOS PD Frequency Responses 
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 0.4 
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– 0.01 
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 -20 dB/decade 

 1 – 10 MHz  1 GHz or more 
RinCPD 

Slow rolloff due to diffusing carriers 

Representative of photodiodes in 0.18 mm CMOS process  
with light at l = 850 nm 



Typical CMOS PD Pulse Responses 
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Representative of photodiodes in 0.18 mm CMOS process  
with light at l = 850 nm at 5 Gbps 
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Equalization of the Pulse Response 
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Analog 
Eq. 



Analog Equalization 
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Radovanovic, Annema, Nauta, "A 3-Gb/s optical detector in standard CMOS for 850-nm optical 
communication," JSSC, Aug. 2005. 

• High-order transfer function 
is required to equalize the  
5 dB/decade slope 



SML + Analog Equalization 
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When combined with a SML 
detector, a first-order equalizer 
may suffice [Hermans, ESSCirc 
2006] 

Kao and Chan Carusone, “A 5-Gbps Optical Receiver with Monolithically Integrated Photodetector 
in 0.18-um CMOS,” RFIC Symposium, June 2009. 



Equalization of the Pulse Response 
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N-tap 
DFE 

Analog 
Eq. 
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Maximum Data Rates: Analog Eq. + DFE  

Standard Photodetector SML Photodetector 
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• Many DFE taps are 
required to accurately 
cancel the distant post-
cursor ISI 

• High-gain low-noise 
TIA is required due to 
the reduced 
responsivity of an SML 
detector 



High-Speed CMOS Photodetector Summary 

• Slowly-diffusing carriers 
– Maximize depletion regions via layout  

  increases capacitance 
– Maximize depletion regions via large reverse bias 

  need for dual-supplies or charge pump, reliability 
concerns 

– Shield diffusing carriers 
– Signal processing techniques:  

• SML  decreases responsivity 
• equalization 

• Low responsivity 
– Low-noise/high-sensitivity TIA 

• High capacitance 
– Low input-resistance TIA 
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SML Photodetector Example 
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• 0.18 mm bulk CMOS process 
• M1 is used for contacts, M2 is used 

to block light 
• Junction side-walls also collect 

photons 
• 20 strips (10 light + 10 dark) across a 

75um x 75um area 



System Design 
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• Responsivity, R = 0.03 A/W & Input optical power of -5 dBm  Photodiode current, IPD = 9 mA 

• BER = 10-12  TIA input-referred noise of 0.65 mArms 

• TIA output of 50 mV makes noise performance of subsequent stages non-critical  RF = 5.6 kW 

• Similar architecture reported in: 
– C. Hermans et al, “A Gigabit optical receiver with monolithically integrated photodiode in 0.18-μm 

CMOS,” ESSCIRC, Sept. 2006. 
– Chen et al, “A 3.125 Gbps CMOS Fully Integrated Optical Receiver with Adaptive Analog Equalizer,” 

ASSCC, Nov. 2007. 
– Tavernier & Steyaert, "High-Speed Optical Receivers With Integrated Photodiode in 130 nm CMOS," JSSC, 

Oct. 2009. 
– Lee et al, "An 8.5Gb/s CMOS OEIC with on-chip photodiode for short-distance optical communications," 

ISSCC, Feb. 2010. 



Regulated Cascode Input? 
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• Low responsivity SML detector 

• High system bandwidth (5-Gbps) 

Very low input-referred noise required 

No regulated cascode at the input 

 



Transimpedance Amplifier 
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Cin = CPD + CA1  
      500 fF + 500 fF = 1 pF 
Cp1  680 fF 
Cp2  100 fF 
 
Notice VPD,dc  VDD – 625 mV 

 



Transimpedance Amplifier 
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AC Coupling 
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• Converts single-ended signal to fully-differential 

• Facilitates the operation of the TIA from a higher supply voltage  

  Higher reverse bias applied across the photodetector 

  Increased responsivity approximately 60% 



Equalization + Limiting Amplifier 
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Additional 
differential gain 
required to 
improve CMRR 

Limiting 
amplifier with 
DC offset 
compensation 
loop 

Analog Eq. 

Power 
Breakdown 
(Total 115mW) 



Optical Alignment in Measurements 
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Measurement Results 

At 4.25 Gbps 

BW-limited at 5 Gbps 
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Measurement Results 

At 5 Gbps 

Increased current consumption 
in the TIA 

 Noise limited at 5 Gbps 
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Measurement Summary 
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Impact of Technology Scaling 

 Lower supply voltages  lower reverse bias voltages available  ? 

 Thinner depletion regions  less drift, more diffusion current, increased CPD  ? 

 More complex dielectric stack  reduced light transmission 

 Smaller metallization and contacts admits more light into the silicon 

 “Standard” nanoscale processes provide many different materials, junctions 

 Higher TIA bandwidth  

 Lower power limiting amp, CDR, etc. 

 More advanced signal processing solutions 52 



Example: 65nm CMOS Photodetector 

53 

IPD 



Example: 65nm CMOS Photodetector 
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 Shorter carrier lifetime? 
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stack? 



Phototransistor Experiment 

• “Base” is left floating; base current is 
provided by photo-generated carriers 

• The photocurrent observed at the 
“collector” is amplified by transistor 
action 

65-nm CMOS measurements: 
• > 0.3 A/W observed at low 

frequencies 
• BUT 3-dB bandwidth of only 0.15 MHz 
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Conclusions 

• There are applications at 850nm or shorter 
wavelengths where a high level of integration is more 
important than very high sensitivity 

• A combination of 
– Clever use of existing CMOS process features 
– Signal processing circuitry 

have so far permitted performance in the range of  
5 – 8.5 Gb/s @ -5 – 0 dBm input and 50 – 150 mW 
(better if very high supply voltages are permitted) 

• Future progress: 
– Integration in nanoscale CMOS 
– Power reductions, speed improvements, sensitivity 

improvements 
– Demonstrable robustness in manufacture and test 
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