Multi-Gbps Optical Receivers with CMOS Integrated Photodetectors

Tony Chan Carusone, Hemesh Yasotharan, Tony Kao Integrated Systems Laboratory, University of Toronto Web: isl.utoronto.ca Email: tony.chan.carusone@isl.utoronto.ca

February 2, 2011

Outline

- Introduction
 - Trend towards short-reach optical
 - Trend towards highly integrated transceivers
- Tutorial on High-speed CMOS photodetection
 - Optical properties of silicon
 - Standard CMOS photodetectors
 - Diffusion-shielded photodetectors
 - Spatially modulated light detectors

- Equalization to improve CMOS photodetectors
 - Analog equalization
 - Decision-Feedback
 Equalization
- Case study: 0.18 µm CMOS integrated optical receiver
 - SML detector
 - Analog equalizer
- Photodetectors in nanoscale CMOS technologies
 - Experimental results from a 65 nm process

Short-Reach Optical Communication

Characteristics

- High volume
- High port density

Requirements

- ➤ CHEAP!
 - VCSEL lasers at λ = 850nm
 - Multimode fiber
- Integration
- Low-power

Good recipe for CMOS!

Optical Transceiver

Optical Transceiver

Optical Transceiver – SiP

I. Young et al, "Optical I/O technology for tera-scale computing," JSSC, Jan. 2010.

Optical Transceiver – Silicon Photonics

e.g. I. Young et al, "Optical I/O technology for tera-scale computing," *JSSC*, Jan. 2010. Analui et al, "A Fully Integrated 20-Gb/s Optoelectronic Transceiver Implemented in a Standard 0.13-μm CMOS SOI Technology," *JSSC*, Dec. 2006.

Optical Transceiver

Outline

- Introduction
 - Trend towards short-reach optical
 - Trend towards highly integrated transceivers
- Tutorial on High-speed CMOS photodetection
 - Optical properties of silicon
 - Standard CMOS photodetectors
 - Diffusion-shielded photodetectors
 - Spatially modulated light detectors

- Equalization to improve CMOS photodetectors
 - Analog equalization
 - Decision-Feedback
 Equalization
- Case study: 0.18 µm CMOS integrated optical receiver
 - SML detector
 - Analog equalizer
- Photodetectors in nanoscale CMOS technologies
 - Experimental results from a 65 nm process

High-Speed Photodetectors

Optical Absorption of Semiconductors

From: H. Zimmermann, Silicon Optoelectronic Integrated Circuits, Springer, 2004.

Absorption PDF of light at λ = 850 nm

CMOS Photodetectors

Recombination

CMOS Photodetectors

CMOS Photodetector Examples

n+/p n-well/p \sim ∽₩ $A_{\rm C}$ Light Light ᆕ ᆕ ᆕ ᆕ p+ p+ n+ **p**+ n+ p+ n+ p+ n+ p+ \mathbf{U} l_x l_{v} n-well n-well $W\downarrow$ 2 l_y p-substrate p-substrate

High Reverse Bias

e.g. 14.2-V reverse bias in S.-H. Huang & W.-Z. Chen, "A 10-Gbps CMOS single chip optical receiver with 2-D meshed spatially-modulated light detector," *CICC*, Sept. 2009

Impact of Reverse Bias Voltage

Junction capacitance

Intrinsic frequency response

Layout Considerations

Few/Wider strips:

- Less contact metal blocking light
- ✓ Smaller C_{PD}

More/Smaller strips:

- Short diffusion times for the carriers to get to the contacts
- Additional sidewall depletion regions for light absorption

Similar tradeoffs arise between 1-D and 2-D contact arrays

Diffusion-Shielded Photodetectors

Similar effect provided by SOI

Diffusion-Shielded Photodetectors

P. J. Lim et al, "A 3.3-V monolithic photodetector/CMOS preamplifier for 531 Mb/s optical data link applications," *ISSCC* 1993 T.K. Woodward & A.V. Krishnamoorthy, "1 Gbit/s CMOS photoreceiver with integrated detector operating at 850 nm," *Electronics Letters*, Jun 1998.

Diffusion-Shielded Photodetector Example

- n+/p junction is reversebiased and used as the active photodetector
- p/n-well junction is
 reverse biased to collect
 and discard
 photocarriers generated
 far below the n+/p
 junction

Spatially Modulated Photodetectors

Spatially Modulated Photodetectors

Kuijk et al, "Spatially modulated light detector in CMOS with sense-amplifier receiver operating at 180 Mb/s for optical data link applications and parallel optical interconnects between chips," *IEEE J. Sel. Top. Quant. Elec.,* Nov/Dec 1998.

Typical CMOS PD Frequency Responses

Typical CMOS PD Pulse Responses

Representative of photodiodes in 0.18 μ m CMOS process with light at λ = 850 nm at 5 Gbps

Outline

- Introduction
 - Trend towards short-reach optical
 - Trend towards highly integrated transceivers
- Tutorial on High-speed CMOS photodetection
 - Optical properties of silicon
 - Standard CMOS photodetectors
 - Diffusion-shielded photodetectors
 - Spatially modulated light detectors

- Equalization to improve CMOS photodetectors
 - Analog equalization
 - Decision-Feedback
 Equalization
- Case study: 0.18 µm CMOS integrated optical receiver
 - SML detector
 - Analog equalizer
- Photodetectors in nanoscale CMOS technologies
 - Experimental results from a 65 nm process

Equalization of the Pulse Response

Analog Equalization

 High-order transfer function is required to equalize the ≈ 5 dB/decade slope

Radovanovic, Annema, Nauta, "A 3-Gb/s optical detector in standard CMOS for 850-nm optical communication," *JSSC*, Aug. 2005.

SML + Analog Equalization

Kao and Chan Carusone, "A 5-Gbps Optical Receiver with Monolithically Integrated Photodetector in 0.18-um CMOS," *RFIC Symposium*, June 2009.

Equalization of the Pulse Response

Maximum Data Rates: Analog Eq. + DFE

Standard Photodetector

 Many DFE taps are required to accurately cancel the distant postcursor ISI

SML Photodetector

 High-gain low-noise TIA is required due to the reduced responsivity of an SML detector

High-Speed CMOS Photodetector Summary

- Slowly-diffusing carriers
 - Maximize depletion regions via layout ⇒ increases capacitance
 - Maximize depletion regions via large reverse bias
 ⇒ need for dual-supplies or charge pump, reliability concerns
 - Shield diffusing carriers
 - Signal processing techniques:
 - SML \Rightarrow decreases responsivity
 - equalization
- Low responsivity
 - Low-noise/high-sensitivity TIA
- High capacitance
 - Low input-resistance TIA

Outline

- Introduction
 - Trend towards short-reach optical
 - Trend towards highly integrated transceivers
- Tutorial on High-speed CMOS photodetection
 - Optical properties of silicon
 - Standard CMOS photodetectors
 - Diffusion-shielded photodetectors
 - Spatially modulated light detectors

- Equalization to improve CMOS photodetectors
 - Analog equalization
 - Decision-Feedback
 Equalization
- Case study: 0.18 µm CMOS integrated optical receiver
 - SML detector
 - Analog equalizer
- Photodetectors in nanoscale CMOS technologies
 - Experimental results from a 65 nm process

SML Photodetector Example

- 0.18 μm bulk CMOS process
- M1 is used for contacts, M2 is used to block light
- Junction side-walls also collect photons
- 20 strips (10 light + 10 dark) across a 75um x 75um area

System Design

- Responsivity, R = 0.03 A/W & Input optical power of -5 dBm \Rightarrow Photodiode current, I_{PD} = 9 μ A
- BER = $10^{-12} \Rightarrow$ TIA input-referred noise of 0.65 μ A_{rms}
- TIA output of 50 mV makes noise performance of subsequent stages non-critical \Rightarrow R_F = 5.6 k Ω
- Similar architecture reported in:
 - C. Hermans et al, "A Gigabit optical receiver with monolithically integrated photodiode in 0.18-μm CMOS," ESSCIRC, Sept. 2006.
 - Chen et al, "A 3.125 Gbps CMOS Fully Integrated Optical Receiver with Adaptive Analog Equalizer," ASSCC, Nov. 2007.
 - Tavernier & Steyaert, "High-Speed Optical Receivers With Integrated Photodiode in 130 nm CMOS," JSSC, Oct. 2009.
 - Lee et al, "An 8.5Gb/s CMOS OEIC with on-chip photodiode for short-distance optical communications," *ISSCC*, Feb. 2010.

Regulated Cascode Input?

- Low responsivity SML detector
- High system bandwidth (5-Gbps)
- Very low input-referred noise required
- > No regulated cascode at the input

Transimpedance Amplifier

Notice $V_{PD,dc} \approx V_{DD} - 625 \text{ mV}$

Transimpedance Amplifier

AC Coupling

- Converts single-ended signal to fully-differential
- Facilitates the operation of the TIA from a higher supply voltage
- \Rightarrow Higher reverse bias applied across the photodetector
- \Rightarrow Increased responsivity approximately 60%

Equalization + Limiting Amplifier

Optical Alignment in Measurements

Measurement Results

At 4.25 Gbps

BW-limited at 5 Gbps

Measurement Results

At 5 Gbps

Increased current consumption in the TIA ⇒ Noise limited at 5 Gbps

Measurement Summary

LP

Te	chnology	0.18-μn	n CMOS	
Supply voltages		3.3 V, 1.8 V		
To	tal chip area	$1.5 \text{ x } 2.8 = 4.2 \text{ mm}^2$		
Co	Core area of optical receiver front-end		$0.86 \ge 0.84 = 0.72 \text{ mm}^2$	
Op	Optical wavelength		850 nm	
Av	verage input power	-3 dBm		
Hi	ghest data rate with BER less than 10^{-12}	4.25 Gbps	5 Gbps	
RN	AS jitter	8.89 ps	11.6 ps	
To	tal power consumption with output buffer	144 mW	$183 \mathrm{~mW}$	
Po	wer consumption without output buffer	129 mW	$168 \mathrm{~mW}$	

HP

Outline

- Introduction
 - Trend towards short-reach optical
 - Trend towards highly integrated transceivers
- Tutorial on High-speed CMOS photodetection
 - Optical properties of silicon
 - Standard CMOS photodetectors
 - Diffusion-shielded photodetectors
 - Spatially modulated light detectors

- Equalization to improve CMOS photodetectors
 - Analog equalization
 - Decision-Feedback
 Equalization
- Case study: 0.18 µm CMOS integrated optical receiver
 - SML detector
 - Analog equalizer
- Photodetectors in nanoscale CMOS technologies
 - Experimental results from a 65 nm process

Impact of Technology Scaling

- **×** Lower supply voltages \Rightarrow lower reverse bias voltages available ?
- * Thinner depletion regions \Rightarrow less drift, more diffusion current, increased C_{PD} ?
- ★ More complex dielectric stack ⇒ reduced light transmission
- \checkmark Smaller metallization and contacts admits more light into the silicon
- ✓ "Standard" nanoscale processes provide many different materials, junctions
- ✓ Higher TIA bandwidth
- ✓ Lower power limiting amp, CDR, etc.
- ✓ More advanced signal processing solutions

Example: 65nm CMOS Photodetector

Example: 65nm CMOS Photodetector

<u>n+/p-epi photodetector</u> 670 mV reverse bias

3-dB bandwidth of 2.5 MHz 20-dB bandwidth \approx 6.3 GHz

DC responsivity = 0.03 A/W c.f. \approx 0.3 A/W typical in 0.18 μ m CMOS

Shorter carrier lifetime?
 Reflection in dielectric stack?

Phototransistor Experiment

- "Base" is left floating; base current is provided by photo-generated carriers
- The photocurrent observed at the "collector" is amplified by transistor action

65-nm CMOS measurements:

- > 0.3 A/W observed at low frequencies
- BUT 3-dB bandwidth of only 0.15 MHz

Conclusions

- There are applications at 850nm or shorter wavelengths where a high level of integration is more important than very high sensitivity
- A combination of
 - Clever use of existing CMOS process features
 - Signal processing circuitry

have so far permitted performance in the range of 5 - 8.5 Gb/s @ -5 - 0 dBm input and 50 - 150 mW (better if very high supply voltages are permitted)

- Future progress:
 - Integration in nanoscale CMOS
 - Power reductions, speed improvements, sensitivity improvements
 - Demonstrable robustness in manufacture and test