A 45-nm SOI-CMOS Dual-PLL Processor Clock System for Multi-Protocol I/O

Dennis Fischette, Alvin Loke, Michael Oshima, Bruce Doyle, Roland Bakalski*, Richard DeSantis, Anand Thiruvengadam, Charles Wang, Gerry Talbot, Emerson Fang

Advanced Micro Devices, Inc., *GlobalFoundries
Outline

• Introduction

• Architecture and Circuits
 • Ring-based PLL
 • LC-based PLL

• Silicon Results

• Conclusion
The Vision

• I/O connectivity for integrated CPU + GPU
 • PCI Express® (PCIe) 1.1 & 2.0
 • DisplayPort™ (DP), DVI™, HDMI™
Multi-Protocol Requirements

- Wide range of operating modes
 - \(f_{\text{ref}} = 50 - 450 \, \text{MHz} \rightarrow f_{\text{out}} = 125 - 2500 \, \text{MHz} \)
 - 2 – 4 MHz BW @ < 2 dB Peaking
 - 5 – 8 MHz BW @ < 1 dB Peaking
 - 8 – 16 MHz BW @ < 3 dB Peaking

- Strict PLL phase jitter requirements < 1.0 – 1.5 ps rms

- Fast exit (< 5 µs) from power-down/sleep modes for low-power client applications
Design Challenges

• Partially-depleted (PD) SOI noise concerns
 • More FET noise than bulk from floating body and high-resistance body ties
 • More difficult to predict jitter since RF simulators cannot handle floating-body devices correctly

• PVT variation + mismatch → large BW variation
 • e.g., 3x VCO gain variation

• Noisy operating environment
 • Multi-core CPU + graphics + memory controller
Outline

• Introduction

• Architecture and Circuits
 • Ring-based PLL
 • LC-based PLL

• Silicon Results

• Conclusion
Dual-PLL Architecture

- Low-jitter **LC-PLL** for PCIe 2.0 (narrow tuning range)
- Higher-jitter **Ring-PLL** for all other modes (wide tuning range)
- 10% area overhead for dual-PLLs (many shared circuits)
- Voltage regulators (from 2.5 V) to reduce power-supply noise
Ring-PLL – Dual-Path VCO Control

- **High-BW** / low-gain path ($V_{control}$)
 - Sets PLL bandwidth
 - Conventional 2-pole / 1-zero
 - Effective $K_{VCO} \downarrow \rightarrow$ jitter \downarrow
 (70% less jitter contribution from loop-filter resistor and charge-pump)

- **Low-BW** / high-gain path (V_{slow})
 - Sets VCO “center” frequency
 - $BW (V_{slow}) < 0.2\% \times BW (V_{control})$
 - Contributes negligible jitter
 - Bypass R_{slow} during fastlock mode (pay attention to stability)
 - IR drop across R_{slow} due to leakage < 15 mV \rightarrow limits $BW (V_{slow})$
Ring-PLL – Slow-Path Jitter Analysis

• Low-pass filter shapes noise to control jitter
 - $V_n \propto \frac{1}{C_{slow} \sqrt{R_{slow}}}$
 - For constant RC, get lower jitter with larger C_{slow} but area penalty
 - $R_{slow} = 600$ kΩ and $C_{slow} = 20$ pF
• Negligible slow-path jitter
 - Slow-path jitter < 75 fs
 - Fast-path jitter < 400 fs
 - VCO jitter < 1000 fs

$R_{slow} \cdot C_{slow} = \text{constant}$
Ring-PLL – VCO Design

• Dual-control path for lower effective gain
• Body-tied MOSFETs for jitter reduction and ability to simulate \(\rightarrow 2x\) speed penalty
• 5-stage Ring-oscillator VCO
 • 5 stages for easier oscillation
 • Cross-coupled inverters for fast slew rates and level shifting
• Source degeneration in current bias for noise reduction
• Amplifier in bias circuits to improve supply noise rejection
• Divide-by-2 \(\rightarrow 50\%\) duty-cycle
Body-Tied PD-SOI MOSFET (T-Gate)

• Enables body connection to undepleted FET well
• High R_{body} and extra C_{gate} limits BW of body connection
• NMOS example

![Diagram of body-tied PD-SOI MOSFET (T-Gate)]
Ring-PLL – VCO Gain Calibration

- PLL in closed-loop operation with *fastlock* asserted
- Algorithm – reduce $K_v[3:0]$ until $V_{\text{control}} > V_{\text{ref}}$

- Result
 - K_{vco} variation across PVT reduced by 43%
 - More constant I_{bias} → 15% less jitter
 - → 9 dB lower ref spurs
Bandwidth and Peaking Measurements

- Algorithm based on Fischette et al., CICC 2009
 - Apply instantaneous half-period phase step by inverting RefClk
 - Measure $\tau_{crossover}$ ($\rightarrow BW$) and MaxOvershoot (\rightarrow Peaking)

![Graph showing phase error and crossover time](image)
LC-PLL – 10 GHz LC-VCO Design

- Lower jitter than ring-VCO
- 29% tuning range
- Tune at 4x required frequency for smaller \(L \) and 50% duty cycle
- Low VCO gain → No slow path required
- Floorplan to avoid magnetic coupling from switching currents in surrounding circuits and supply bumps
LC-PLL – VCO Elements

- Body ties for gain and tail devices
 - Narrow widths for higher BW connectivity
 - Lower channel and upconverted $1/f$ noise
 - Tuning range penalty from T-gate load
- Differential inductor
 - M11 turns with M10-M09-M08 underpass
 - Extensive dummy metal fill for CMP manufacturability
- Varactors
 - Accumulation mode n-well for good Q
 - Thick oxide for low I_{gate}
LC-PLL – Coarse-Tuning Calibration

- VCO coarse-tuned by 5-bit DAC, steps frequency by 0.5 – 0.8%
- Calibrate VCO using $RefClk$ and PLL feedback clock counters
- $RefClk$ has up to 0.5% spread spectrum frequency modulation
- Count over one 33 kHz spread spectrum period to desensitize calibration from modulation phase and preserve post-calibration tunability, otherwise risk non-monotonic calibration code
Outline

• Introduction

• Architecture and Circuits
 • Ring-based PLL
 • LC-based PLL

• Silicon Results

• Conclusion
Measured Phase Noise at 2.5 GHz
RMS Jitter Distributions at 2.5 GHz

- 1 MHz – 1.25 GHz integration window
- 27 parts (includes V_T and resistor skew wafers)
Die Photograph

- Voltage Regulators
- ESD
- Ring VCO
- LC VCO
- Charge Pumps
- STATE Machines
- Loop Filters

Dimensions:
- Width: 388 µm
- Height: 715 µm
Performance Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ring-PLL</th>
<th>LC-PLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>45 nm SOI-CMOS (36 nm (L_{\text{gate}}))</td>
<td></td>
</tr>
<tr>
<td>VCO Lock Range</td>
<td>1.0 – 8.5 GHz</td>
<td>8.3 – 11.1 GHz</td>
</tr>
<tr>
<td>RMS Jitter</td>
<td>Mean ± 3(\sigma)</td>
<td>975 ± 85 fs</td>
</tr>
<tr>
<td>Phase Noise</td>
<td>At 1 MHz Offset</td>
<td>–106.6 dBc/Hz</td>
</tr>
<tr>
<td></td>
<td>At 10 MHz Offset</td>
<td>–114.9 dBc/Hz</td>
</tr>
<tr>
<td>Reference Spur</td>
<td>At 100 MHz Offset</td>
<td>–58.4 dBc</td>
</tr>
<tr>
<td>Jitter Transfer</td>
<td>–3 dB Bandwidth</td>
<td>6.6 MHz</td>
</tr>
<tr>
<td></td>
<td>Peaking</td>
<td>0.41 dB</td>
</tr>
<tr>
<td>Supply Consumption</td>
<td>Current</td>
<td>28 mA</td>
</tr>
<tr>
<td></td>
<td>Voltage</td>
<td>1.8 – 2.7 V (2.5 V nom)</td>
</tr>
</tbody>
</table>
Conclusion

• Designed dual-PLL system for clocking multi-protocol wireline I/O in 45-nm SOI-CMOS processors

• Presented circuit and architectural techniques to minimize impact of PD-SOI floating-body and PVT variations

• Exceeded multi-protocol requirements
 • 1.0 – 11.1 GHz VCO lock range
 • 975±85 fs rms jitter for ring-based PLL
 • 535±76 fs rms jitter for LC-based PLL
Acknowledgments

AMD
- Larry Bair
- John Faricelli
- Kurt Ireland
- Chad Lackey
- Jim Pattison
- Norma Rodriguez
- Keertika Singh
- Sam Sim

GlobalFoundries
- Jung-Suk Goo
- Tilo Mantei
- René Nagel
- Lynne Okada
- Christoph Schwan
- Rasit Topaloglu
- Thomas Werner
- Jianhong Zhu

Thank you for your attention!