A 45-nm SOI-CMOS Dual-PLL Processor Clock System for Multi-Protocol I/O

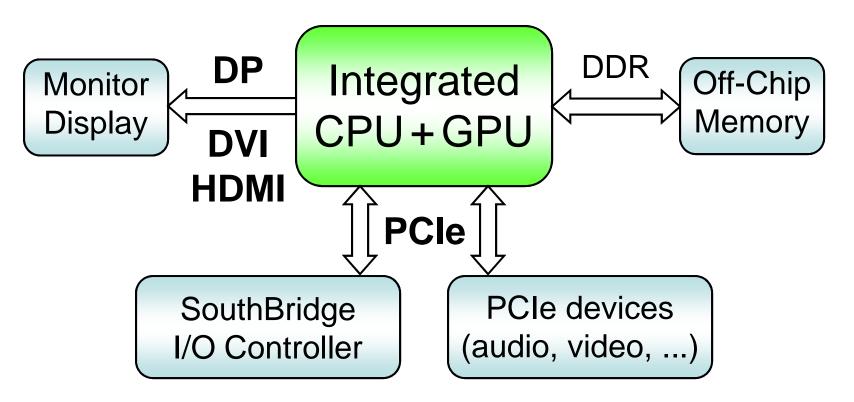
Dennis Fischette, Alvin Loke, Michael Oshima, Bruce Doyle, Roland Bakalski*, Richard DeSantis, Anand Thiruvengadam, Charles Wang, Gerry Talbot, Emerson Fang

Advanced Micro Devices, Inc., *GlobalFoundries

VDRIES

BALFOUN

The future is fusion

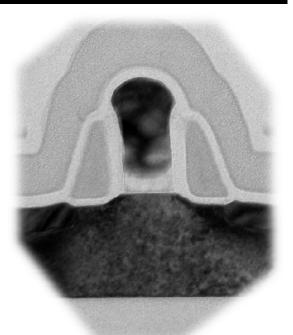

Outline

Introduction

- Architecture and Circuits
 - Ring-based PLL
 - LC-based PLL
- Silicon Results
- Conclusion

The Vision

- I/O connectivity for integrated CPU+GPU
 - PCI Express[®] (PCIe) 1.1 & 2.0
 - DisplayPort[™] (DP), DVI[™], HDMI[™]

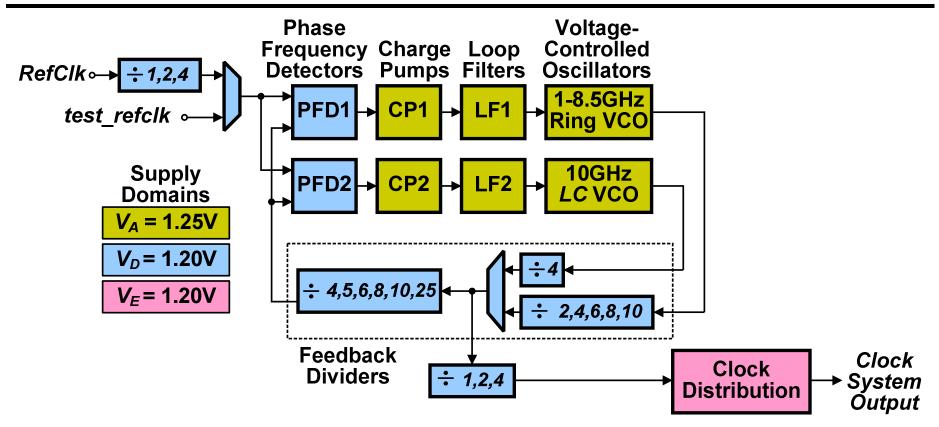


Multi-Protocol Requirements

- Wide range of operating modes
 - $f_{ref} = 50 450 \text{ MHz} \rightarrow f_{out} = 125 2500 \text{ MHz}$
 - 2-4 MHz BW @ < 2 dB Peaking
 - 5 8 MHz *BW* @ < 1 dB *Peaking*
 - 8 16 MHz BW @ < 3 dB Peaking
- Strict PLL phase jitter requirements < 1.0 1.5 ps rms
- Fast exit (< 5 µs) from power-down/sleep modes for low-power client applications

Design Challenges

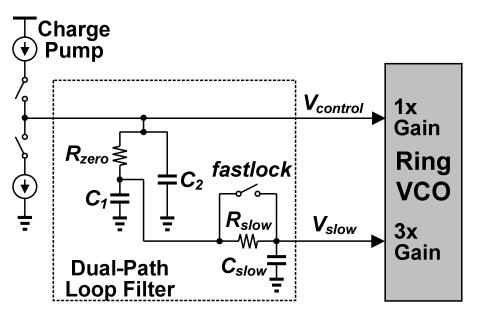
- Partially-depleted (PD) SOI noise concerns
 - More FET noise than bulk from floating body and high-resistance body ties
 - More difficult to predict jitter since RF simulators cannot handle floating-body devices correctly



- PVT variation + mismatch \rightarrow large BW variation
 - e.g., 3x VCO gain variation
- Noisy operating environment
 - Multi-core CPU + graphics + memory controller

Outline

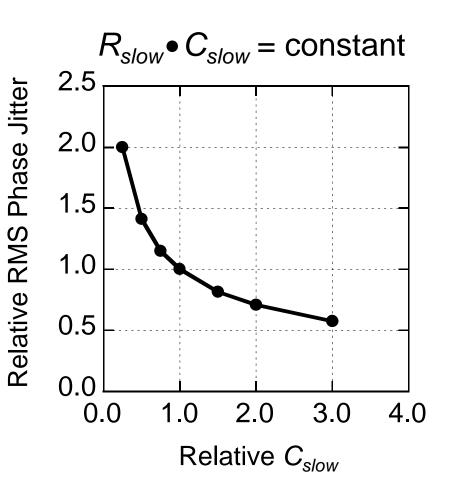
- Introduction
- Architecture and Circuits
 - Ring-based PLL
 - LC-based PLL
- Silicon Results
- Conclusion


Dual-PLL Architecture

- Low-jitter *LC*-PLL for PCIe 2.0 (narrow tuning range)
- Higher-jitter Ring-PLL for all other modes (wide tuning range)
- 10% area overhead for dual-PLLs (many shared circuits)
- Voltage regulators (from 2.5 V) to reduce power-supply noise

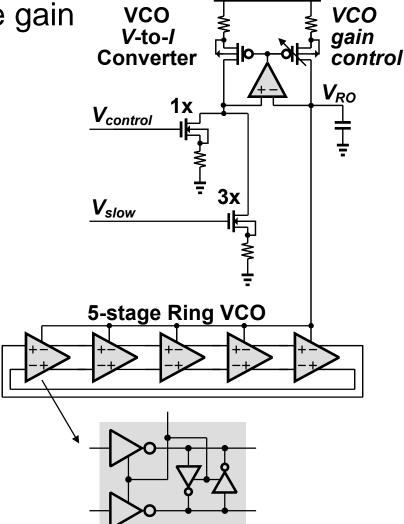
Ring-PLL – Dual-Path VCO Control

- High-BW / low-gain path (V_{control})
 - Sets PLL bandwidth
 - Conventional 2-pole / 1-zero
 - Effective $K_{VCO} \downarrow \rightarrow \text{jitter} \downarrow$ (70% less jitter contribution from loop-filter resistor and charge-pump)
- Low-BW / high-gain path (V_{slow})
 - Sets VCO "center" frequency
 - $BW(V_{slow}) < 0.2\% \times BW(V_{control})$
 - Contributes negligible jitter
 - Bypass *R*_{slow} during *fastlock* mode (pay attention to stability)
 - *IR* drop across R_{slow} due to leakage < 15 mV \rightarrow limits *BW* (V_{slow})

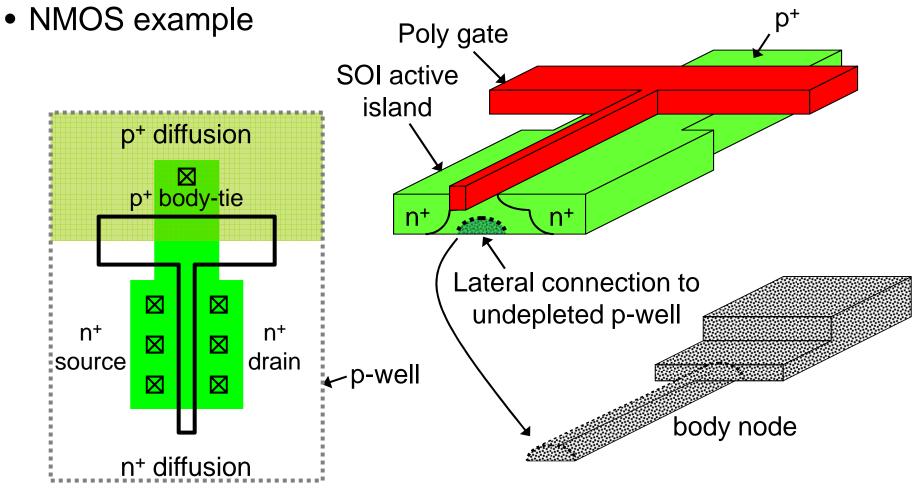


Ring-PLL – Slow-Path Jitter Analysis

 Low-pass filter shapes noise to control jitter


•
$$V_n \propto \frac{1}{C_{slow}\sqrt{R_{slow}}}$$

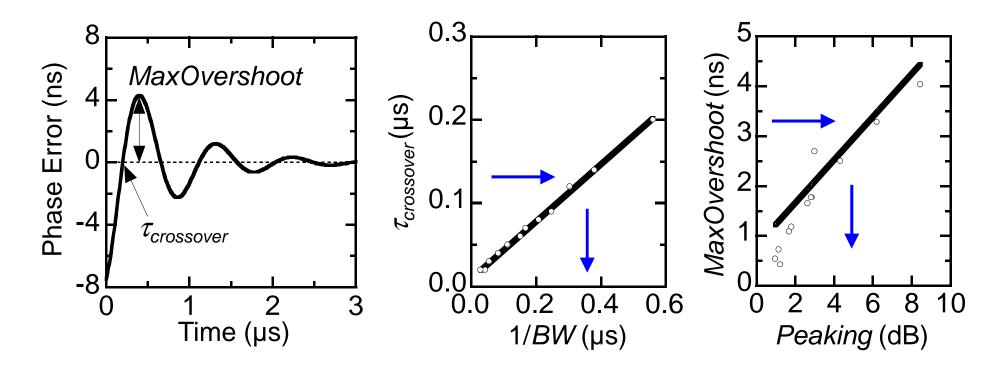
- For constant RC, get lower jitter with larger C_{slow} but area penalty
- R_{slow} = 600 k Ω and C_{slow} = 20 pF
- Negligible slow-path jitter
 - Slow-path jitter < 75 fs
 - Fast-path jitter < 400 fs
 - VCO jitter < 1000 fs


Ring-PLL – VCO Design

- Dual-control path for lower effective gain
- Body-tied MOSFETs for jitter reduction and ability to simulate → 2x speed penalty
- 5-stage Ring-oscillator VCO
 - 5 stages for easier oscillation
 - Cross-coupled inverters for fast slew rates and level shifting
- Source degeneration in current bias for noise reduction
- Amplifier in bias circuits to improve supply noise rejection
- Divide-by-2 \rightarrow 50% duty-cycle

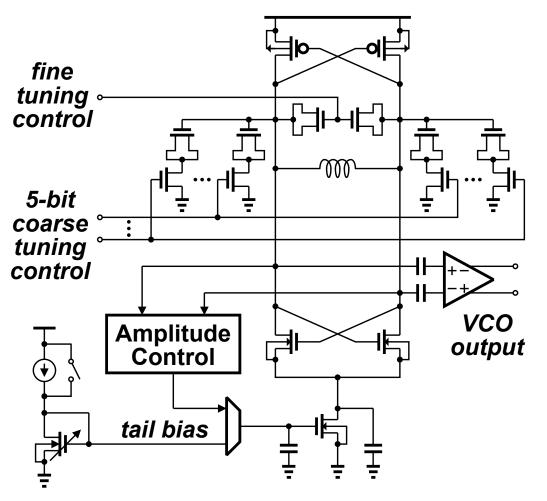
Body-Tied PD-SOI MOSFET (T-Gate)

- Enables body connection to undepleted FET well
- High R_{body} and extra C_{gate} limits BW of body connection

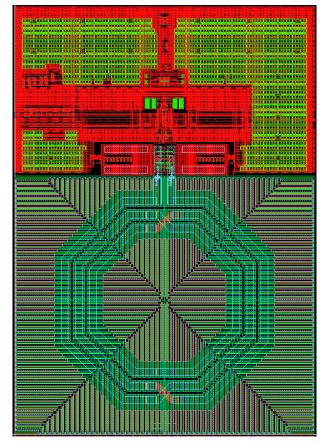


Ring-PLL – VCO Gain Calibration

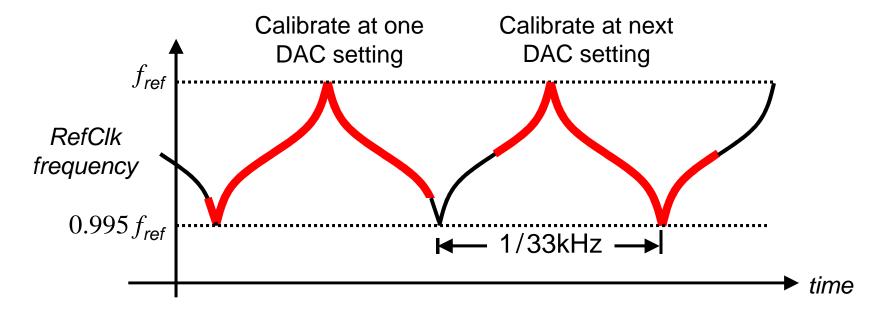
- PLL in closed-loop operation with *fastlock* asserted
- Algorithm reduce Kv[3:0] until $V_{control} > V_{ref}$
- DecrementKv Result **R-ladder** M=Kv[3:0] • K_{vco} variation across ≶ **V**_{ref} **Finite** PVT reduced by 43% M=8 State ≹ **V**_{RO} More constant I_{bias} Machine V_{control} \rightarrow 15% less jitter *R*_{zero}≱ **FSMclk** ‡C₂ \rightarrow 9 dB lower ref spurs C₁≑ 3x Vslow Ring fastlock = 1 $+C_{slow}$ VCO


Bandwidth and Peaking Measurements

- Algorithm based on Fischette et al., CICC 2009
 - Apply instantaneous half-period phase step by inverting *RefClk*
 - Measure $\tau_{crossover}$ (\rightarrow BW) and MaxOvershoot (\rightarrow Peaking)


LC-PLL – 10 GHz LC-VCO Design

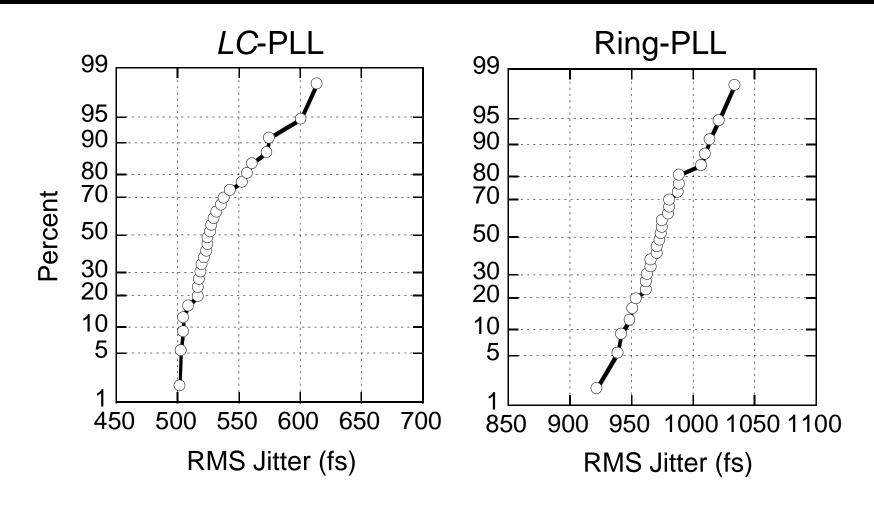
- Lower jitter than ring-VCO
- 29% tuning range
- Tune at 4x required frequency for smaller *L* and 50% duty cycle
- Low VCO gain \rightarrow No slow path required
- Floorplan to avoid magnetic coupling from switching currents in surrounding circuits and supply bumps


LC-PLL – VCO Elements

- Body ties for gain and tail devices
 - Narrow widths for higher *BW* connectivity
 - Lower channel and upconverted 1/f noise
 - Tuning range penalty from T-gate load
- Differential inductor
 - M11 turns with M10-M09-M08 underpass
 - Extensive dummy metal fill for CMP manufacturability
- Varactors
 - Accumulation mode n-well for good Q
 - Thick oxide for low I_{gate}

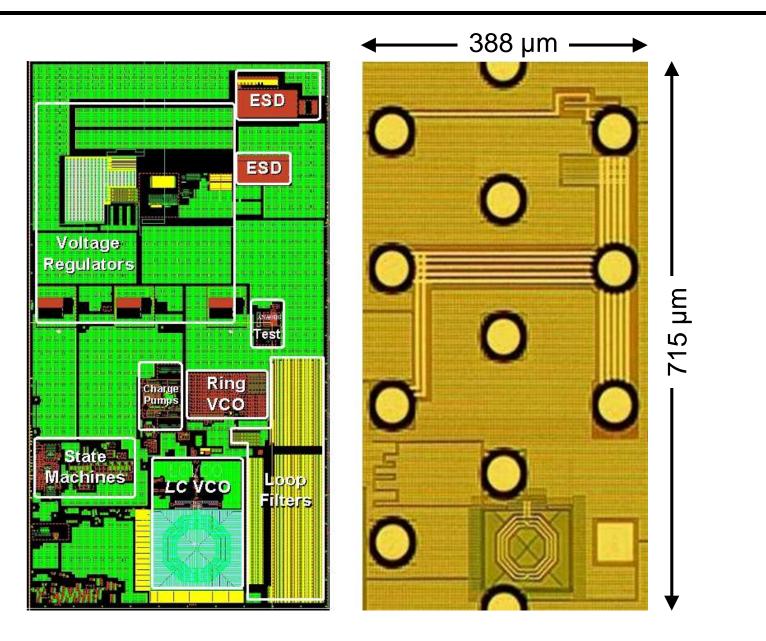
LC-PLL – Coarse-Tuning Calibration

- VCO coarse-tuned by 5-bit DAC, steps frequency by 0.5 0.8%
- Calibrate VCO using *RefClk* and PLL feedback clock counters
- RefClk has up to 0.5% spread spectrum frequency modulation
- Count over one 33 kHz spread spectrum period to desensitize calibration from modulation phase and preserve post-calibration tunability, otherwise risk non-monotonic calibration code


Outline

- Introduction
- Architecture and Circuits
 - Ring-based PLL
 - LC-based PLL
- Silicon Results
- Conclusion

Measured Phase Noise at 2.5 GHz



RMS Jitter Distributions at 2.5 GHz

- 1 MHz 1.25 GHz integration window
- 27 parts (includes V_T and resistor skew wafers)

Die Photograph

Performance Summary

Parameter		Ring-PLL	LC-PLL
Technology		45 nm SOI-CMOS(36 nm L _{gate})	
VCO Lock Range		1.0 – 8.5 GHz	8.3 – 11.1 GHz
RMS Jitter	Mean $\pm 3\sigma$	975 ± 85 fs	536 ± 76 fs
Phase Noise	At 1 MHz Offset	–106.6 dBc/Hz	–112.1 dBc/Hz
	At 10 MHz Offset	–114.9 dBc/Hz	–123.4 dBc/Hz
Reference Spur	At 100 MHz Offset	–58.4 dBc	–61.8 dBc
Jitter Transfer	-3 dB Bandwidth	6.6 MHz	6.6 MHz
	Peaking	0.41 dB	0.54 dB
Supply Consumption	Current	28 mA	24 mA
	Voltage	1.8 – 2.7 V (2.5 V nom)	

Conclusion

- Designed dual-PLL system for clocking multi-protocol wireline I/O in 45-nm SOI-CMOS processors
- Presented circuit and architectural techniques to minimize impact of PD-SOI floating-body and PVT variations
- Exceeded multi-protocol requirements
 - 1.0 11.1 GHz VCO lock range
 - 975±85 fs rms jitter for ring-based PLL
 - 535±76 fs rms jitter for *LC*-based PLL

Acknowledgments

AMD

- Larry Bair
- John Faricelli
- Kurt Ireland
- Chad Lackey
- Jim Pattison
- Norma Rodriguez
- Keertika Singh
- Sam Sim

GlobalFoundries

- Jung-Suk Goo
- Tilo Mantei
- René Nagel
- Lynne Okada
- Christoph Schwan
- Rasit Topaloglu
- Thomas Werner
- Jianhong Zhu

Thank you for your attention!