

Temperature Sensor Design for Power/Thermal Management in Emerging Semiconductor Processes

by Randy Geiger

STATE

Fort Collins – July 25, 2011

ABSTRACT

Various methods of building on-chip temperature sensors will be reviewed. Performance requirements for on-chip temperature sensors needed for power/thermal management will be discussed. New approaches for building on-chip temperature sensors for multi-site temperature monitoring for power/thermal management in fine-feature processes will be presented. Techniques for designing temperature sensors which provide a Boolean representation of temperature without requiring either an ADC or a voltage reference will be introduced.

IOWA STATE UNIVERSITY

Acknowledgements

Much of this work has been supported by the National Science Foundation and the Semiconductor Research Corporation

Results primarily due to the following students in the AMS program at Iowa State University

- Jun He
- Chen Zhao
- Alex Lee
- Tina Wang
- Karl Peterson

Project coordinated by faculty members Degang Chen and Randy Geiger

Outline

- Review of Temperature Sensor Approaches
- Goal and Motivation
- Inverse Widlar Temperature Sensor
 - Description
 - Measured Results
- Second-Order Temperature Dependence to V_T
- Temperature Sensor with Improved Headroom
- Four-Transistor Dual-V_T Temperature Sensor
- Temperature to Digital Converter
- Summary

Standard Approach to Temperature Sensor Design

- Temp transducer usually provides an output voltage
- Reference is usually a voltage reference
- Generally require calibration at one or more temperatures
- Viable solution for temperature sensor products but not attractive for multi-site on-chip temperature measurement for power/thermal management
 - o Large area
 - Power dissipation
 - o Accuracy

Standard Approach to Temperature Sensor Design

And – all blocks require biasing

- Variations in supply voltage affect performance of Transducer, Reference, and ADC
- \circ Introduce errors (often significant) in X_{OUT} that can not be calibrated out

Little in literature suggests which type of temperature transducer is best

Little in literature suggests which circuit structure is best

Experimental results based upon small samples

Measurement procedures often questionable

Models for temperature dependence of key parameters not well developed either functionally or statistically

Will focus here on threshold-based temperature sensors which show promise for multi-site applications needed for power/thermal management Small, low power, linear

Outline

- Review of Temperature Sensor Approaches
- Goal and Motivation
- Inverse Widlar Temperature Sensor
 - Description
 - Measured Results
- Second-Order Temperature Dependence to V_T
- Temperature Sensor with Improved Headroom
- Four-Transistor Dual-V_T Temperature Sensor
- Temperature to Digital Converter
- Summary

Develop V_{DD}-independent temperature sensor with Boolean output that is very small, very low power, that is useful for power/thermal management applications (1°C accuracy over 80°C to 110°C range)

Secondary Goal: Develop general-purpose temperature sensor with 0.5°C linearity over -20°C to 120°C range.

Goal:

Develop V_{DD}-independent temperature sensor with Boolean output that is very small, very low power, for power/thermal management applications (1°C accuracy over 80°C to 110°C range)

Premise:

- 1. Linearity of output with temperature is the major challenge
- 2. Single-temperature trim can compensate for most process variations
- 3. Batch calibration for slope adequate for modest temperature range
- 4. Second temperature trim for slope if needed

Standard Approach:

- 1. Develop sensor that provides linear temperature output
- 2. Develop ADC to convert this linear signal to Boolean form

Rationale:

Rationale:

- Threshold voltage varies quite linearly with temperature
- Threshold extraction circuits should be small and low power
- Compatible with existing and emerging processes

Concerns:

- Precise temperature dependence of threshold voltage with temperature not well characterized
- In contrast to pn-junction PTAT voltage generators, threshold voltage does not project to 0V at T=0K

Outline

- Review of Temperature Sensor Approaches
- Goal and Motivation
- Inverse Widlar Temperature Sensor
 - Description
 - Measured Results
- Second-Order Temperature Dependence to V_T
- Temperature Sensor with Improved Headroom
- Four-Transistor Dual-V_T Temperature Sensor
- Temperature to Digital Converter
- Summary

- Express threshold voltage at outputs
- Ideally supply independent
- Well-known as bias generators but not as temp sensors
- Seemingly simple structures but design space is large
- Start up circuits not shown

Expression of threshold voltage

$$V_{01} = V_{Tn} \left(\frac{1 - \sqrt{\frac{W_2 L_1}{M W_1 L_2}}}{1 + \sqrt{\frac{W_2 L_3}{W_3 L_2}} - \sqrt{\frac{W_2 L_1}{M W_1 L_2}}} \right)$$
$$V_{02} = V_{Tn} \left(\frac{1 + \sqrt{\frac{W_2 L_3}{W_3 L_2}} - 2\sqrt{\frac{W_2 L_1}{M W_1 L_2}}}{1 + \sqrt{\frac{W_2 L_3}{W_3 L_2}} - \sqrt{\frac{W_2 L_1}{M W_1 L_2}}} \right)$$

where M is the current mirror gain of $M_5:M_4$

$$V_{Tn} = V_{T0n} + \gamma_n T$$

n-type

- Used basic square-law model w/o γ or λ effects
- Outputs highly linear with T
- Outputs highly independent of V_{DD}
- Outputs of other structures similarly express V_T

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

Over 120°C, INL is about .055°C at TT

IOWA STATE UNIVERSITY

DC Response $V_{OUT1}(T)$ Simulation results – TSMC 0.18u - TT - FF - SS - FS - SF V_{DD} 575 M_5 M_4 SS 550 SF $V_{OUT2}(T)$ 525 M_1 M₂ $V_{OUT1}(T)$ \$ 500 M_3 FF 47 n-type 450 Linearity remains good over process corners 425

400--25.0 25.0 50.0 75.0 100 temp (C)

IOWA STATE UNIVERSITY

- Linearity error bounded by 0.16°C over process corners
- This suggests that linearity is robust to process variations
- Robustness is not discussed in any of the published results

IOWA STATE UNIVERSITY

- Some useful fundamental results for characterizing start-up circuits were developed
- These have not been reported in the literature
- Will not go into details in this review

IOWA STATE UNIVERSITY

Simulation results – TSMC 0.18u

IOWA STATE UNIVERSITY

Expression of threshold voltage

- Over 120°C, INL is about .055°C at TT and about 0.16°C over all corners
- Slope quite independent of process single batch calibration may be adequate
- Single-point calibration to compensate for process-dependent offset
- Area is very small and power dissipation is very low
- Results based upon simulations in 0.18u process, must verify experimentally

IOWA STATE UNIVERSITY

Voltage Linear to Temperature Sensors

Based upon simulations, these circuits appear to be much more linear with T than anything reported

IOWA STATE UNIVERSITY

Outline

- Review of Temperature Sensor Approaches
- Goal and Motivation
- Inverse Widlar Temperature Sensor
 - **Description**
 - Measured Results
- Second-Order Temperature Dependence to V_T
- Temperature Sensor with Improved Headroom
- Four-Transistor Dual-V_T Temperature Sensor
- Temperature to Digital Converter
- Summary

Test Chip Layout

Area:825um*759um (PADs are included)

IOWA STATE UNIVERSITY

Different Temperature Sensors on the Die

Circuit	P-type	N-type
Area(um ²)	24*14.4	12*25.5

IOWA STATE UNIVERSITY

Test Temperature Sensor Circuits

IOWA STATE UNIVERSITY

Measurement Strategy

 Using high performance platinum RTD temperature sensor as reference

• Testing configuration

IOWA STATE UNIVERSITY

Measurement Equipment

1. Oven: ESPEC BTL-433

- Thermal controller : Watlow F4 connected with computer by RS-232.
- Temperature range : -20℃ to 180℃
- ±0.5℃ fluctuation at control sensor after stabilization
- Temperature cycling rate :
 - ➤ 1.5℃/m heating
 - > $2^{\circ}/m$ cooling

IOWA STATE UNIVERSITY

Measurement Equipment

2. Thermometer:

- F200 thermometer
- T100-250-18 Platinum Resistance Thermometer

3. Thermal Buffer

• Achieve Thermal equilibrium

IOWA STATE UNIVERSITY

• N-type 5-transistor temperature sensor

12-hour slow ramp test

IOWA STATE UNIVERSITY

- End-point fitting line shows \pm 2.5C linearity error in the measurement results over 120°C range
- Much lower error (100mK) over 30°C range needed for power/thermal management
- Much less linear than simulation results predict but still very useful
- Difference between measurement and simulation attributable to thermal model of $V_{\rm T}$ used in PDK

IOWA STATE UNIVERSITY

P-type 5-transistor temperature sensor

IOWA STATE UNIVERSITY

- End-point fitting line shows <u>+</u> 2.4C linearity error in the measurement results over 120°C range
- Much lower error over 30°C range needed for power/thermal management
- Much less linear than simulation results predict but still very useful
- Difference between measurement and simulation attributable to thermal model of V_{T} used in PDK

IOWA STATE UNIVERSITY

Similar nonlinearity was measured for several other temperature sensors as well !

IOWA STATE UNIVERSITY

Outline

- Review of Temperature Sensor Approaches
- Goal and Motivation
- Inverse Widlar Temperature Sensor
 - Description
 - Measured Results
- Second-Order Temperature Dependence to V_T
- Temperature Sensor with Improved Headroom
- Four-Transistor Dual-V_T Temperature Sensor
- Temperature to Digital Converter
- Summary

2nd Order TC

 In the BSIM3 model, the temperature dependence of the threshold voltage of MOS devices is modeled as

$$V_{th}(T) = V_{th}(TNOM) + \left(KT1 + \frac{KT1L}{L_{eff}} + KT2 \cdot V_{bseff}\right) \cdot \left(\frac{T}{TNOM} - 1\right)$$

KT1 is the temperature coefficient

KT1L is the channel length dependence of the temperature coefficient KT2 is the body-bias coefficient of threshold voltage temperature effect

This is linear in T

Second-order temperature coefficient added to BSIM model

$$KT1 = \alpha \left(\frac{T}{Tnom} - 1\right) - KT10$$

2nd Order TC

Simulation results with second-order model for N-Type sensor

NMOS: $KT1 = -9.2 \times 10^{-3} \cdot (\frac{Temp}{Tnom} - 1) - KT1O_n$ PMOS: $KT1 = -9.8 \times 10^{-3} \cdot (\frac{Temp}{Tnom} - 1) - KT1O_p$

 Inclusion of the second-order TC provides good agreement between simulation and measured results

- Have been unable to get information from industry on modeling second-order temperature effects of threshold voltage
- Have redesigned sensor to reduce second-order temperatue dependance but no experimental results yet

IOWA STATE UNIVERSITY

Outline

- Review of Temperature Sensor Approaches
- Goal and Motivation
- Inverse Widlar Temperature Sensor
 - Description
 - Measured Results
- Second-Order Temperature Dependence to V_T
- Temperature Sensor with Improved Headroom
- Four-Transistor Dual-V_T Temperature Sensor
- Temperature to Digital Converter
- Summary

Headroom Requirements to Accommodate for Process and Temperature Variations:

$$\mathsf{HR} \ > \mathsf{s}_{\mathsf{V}_{\mathsf{Tn}}}^{\mathsf{V}_{\mathsf{o}}} \times \left(\Delta \mathsf{V}_{\mathsf{Tn Proc}} + \Delta \mathsf{V}_{\mathsf{Tn temp}} \right)$$

Inverse Widlar Sensor does not have enough headroom at low V_{DD} (.9V_{\text{DDNOM}}) at the SN,SP process corner

Cascoding is not possible to reduce V_{DD} sensitivity

Both improved HR circuits incorporate active attenuator.

For appropriate design, V_{EB2} is very small Voltage drop from Vin to Vout is approximately V_{Tn} .

Proposed Work 1--- Circuit B

At low V_{DD}

Circuit B

$$0.9V_{DD nom} - (2V_{Tn} + 2V_{EB}) > |HR|$$

- Output is linear with V_{Tn} , (thus linear with temperature)
- Output voltage is V_{DD} independent
- HR constraint reduced by V_{EB} with attenuator
- Low current consumption and small area

Circuit C

 $V_{01} = \frac{[(1-\theta)\sqrt{\frac{(W/L)_{3}}{W_{2}/(L_{2}+L_{6})}} - \sqrt{\frac{(W/L)_{3}}{(W/L)_{1}}}] \times V_{Tn3} + (V_{Tn1}-V_{Tn2})}{(1-\theta)\sqrt{\frac{(W/L)_{3}}{W_{2}/(L_{2}+L_{6})}} - \sqrt{\frac{(W/L)_{3}}{(W/L)_{1}}} + 1}$ $V_{02} = \frac{V_{01}-V_{Tn3}}{\sqrt{\frac{(W/L)_{1}}{(W/L)_{3}}}} + V_{Tn1}$ At low V_{DD}

$$0.9V_{DD nom} - (2V_{Tn} + 2V_{EB}) > |HR|$$

- Output is linear with V_{Tn} , (thus linear with temperature)
- Output voltage is V_{DD} independent
- HR constraint reduced by V_{EB} with attenuator
- Low current consumption and small area

(17)

Simulation Results at Slow n Corner at Low V_{DD}

Simulations at $0.9^*V_{DD Nom}$ at slow n corner

Circuits B and C maintain temperature error within 80mK while Circuit A has more than 900mK temperature error

Simulation Results Summary

Parameters	Performance of Circuit B	Performance of Circuit C
Process	0.18 µm	0.18 µm
Temperature Range	-20°C~100°C	-20°C~100°C
Maximum Temp Error at typical condition	0.23°C	0.1°C
Maximum Temp Error at worst condition	0.38°C	0.65°C
Total area	270 μm²	185 µm²
Output Voltage Coefficient	-2.39 mV/°C	-2.11 mV/°C
Power consumption	95µ₩	б5µW

Outline

- Review of Temperature Sensor Approaches
- Goal and Motivation
- Inverse Widlar Temperature Sensor
 - Description
 - Measured Results
- Second-Order Temperature Dependence to V_T
- Temperature Sensor with Improved Headroom
 - Four-Transistor Dual-V_T Temperature Sensor
- Temperature to Digital Converter
- Summary

Enough headroom for full cascoding even with low supply voltages!

IOWA STATE UNIVERSITY

- Can be viewed as 2-cascaded inverters in a loop
- Must have single operating point with all devices in saturation to obtain V_{DD} insensitivity

IOWA STATE UNIVERSITY

Basic Operation:

If $V_{Tn2} > V_{Tn1}$ will have a single stable equilibrium point (requires no startup) If A_{VL} <1, all devices will be operating in saturation It $V_{Tn1} > V_{Tn2}$, will not operate as a V_{DD} -independent temperature sensor

IOWA STATE UNIVERSITY

- Circuit has been designed in a 65nm process and is in fabrication
- Simulation results suggest INL well under 0.5°C over temperature range needed for power management
- Can not discuss simulation results at this time

IOWA STATE UNIVERSITY

Outline

- Review of Temperature Sensor Approaches
- Goal and Motivation
- Inverse Widlar Temperature Sensor
 - Description
 - Measured Results
- Second-Order Temperature Dependence to V_T
- Temperature Sensor with Improved Headroom
- Four-Transistor Dual-V_T Temperature Sensor
- Temperature to Digital Converter
 - Summary

Direct Temp to Digital Converter

One implementation to demonstrate concept

IOWA STATE UNIVERSITY

Direct Temp to Digital Converter

One implementation to demonstrate concept

Simulation results – TSMC 0.18u with 2nd order model

Output code varies linearly with T

IOWA STATE UNIVERSITY

Direct Temp to Digital Converter

One implementation to demonstrate concept

Simulation results – TSMC 0.18u with 2nd order model

IOWA STATE UNIVERSITY

Outline

- Review of Temperature Sensor Approaches
- Goal and Motivation
- Inverse Widlar Temperature Sensor
 - Description
 - Measured Results
- Second-Order Temperature Dependence to V_T
- Temperature Sensor with Improved Headroom
- Four-Transistor Dual-V_T Temperature Sensor
- Temperature to Digital Converter
 - Summary

Many different approaches have been proposed for building integrated temperature sensors but limited results have been reported that fairly compare the different approaches

Temperature sensors based upon the temperature dependence of the threshold offer potential for implementation of lowpower low-area accurate temperature sensors

Improved models for temperature higher-order temperature dependence of threshold voltage would be quite useful

New method of designing temperature sensor that does not require either a stable reference or an ADC was introduced.

Thank you for your attention !

