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Now: Parallel/DataNow: Parallel/Data--DenseDense

The Big Experience/Small Form Factor ParadoxThe Big Experience/Small Form Factor Paradox
Mid 2000sMid 2000sTechnologyTechnology Mid 1990sMid 1990s Now: Parallel/DataNow: Parallel/Data--DenseDense
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Focusing on the experiences that matterFocusing on the experiences that matter
Consumer PC Usage New Experiences

Email

Web browsing

Office productivity

New Experiences

Accelerated Internet Accelerated Internet Office productivity

Listen to music

Online chat

Watching online video

Photo editing

Accelerated Internet Accelerated Internet 
and HD Videoand HD Video

Photo editing

Personal finances

Taking notes

Online web-based 
games

Simplified Content Simplified Content 
ManagementManagement

Social networking

Calendar management

Locally installed games

Educational apps

ImmersiveImmersive
GamingGaming

Video editing

Internet phone

0% 20% 40% 60% 80% 100%
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People Prefer Visual CommunicationsPeople Prefer Visual Communications

Visual Visual PerceptionPerceptionVerbal Verbal PerceptionPerception

Words are processedWords are processed
at only 150 wordsat only 150 words
per minuteper minute

Pictures and video
are processed 400 to

2000 times faster

 Rich visual experiences
M lti l t tAugmenting Today’s Content:Augmenting Today’s Content:  Multiple content sources 
 Multi-Display
 Stereo 3D
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The Emerging World of New Data Rich Applications The Emerging World of New Data Rich Applications 

The Ultimate VisualThe Ultimate Visual

Communicating

The Ultimate Visual 
Experience™

Fast Rich Web content, favorite HD 
Movies, games with realistic 

graphics

The Ultimate Visual 
Experience™

Fast Rich Web content, favorite HD 
Movies, games with realistic 

graphics • IM, Email, Facebook
• Video Chat, NetMeeting

Using photos
• Viewing& Sharing
• Search, Recognition, Labeling? 
• Advanced Editing

graphicsgraphics

Gaming

• Advanced Editing

Using video
• DVD, BLU-RAY™, HD 
• Search, Recognition, Labeling 
• Advanced Editing & Mixing g

• Mainstream Games
• 3D gamesMusic

• Listening and Sharing
• Editing and Mixing
• Composing and compositing
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New Workload Examples: New Workload Examples: Changing Consumer BehaviorChanging Consumer Behavior

24 hours
of video

Approximately

9 billion
video files owned are of video

uploaded to YouTube

every minute

video files owned are 

high-definition

50 million +
digital media files

1000 
imagesd g ta ed a es

added to personal content libraries

every day

images
are uploaded to Facebook

every second
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What Are the Implications for Computation?What Are the Implications for Computation?
Insatiable demand for highInsatiable demand for high 
bandwidth processing
–Visual image processing
–Natural user interfaces
–Massive data mining for 

associative searchesassociative searches, 
recognition

Some of these compute needs 
b ffl d d tcan be offloaded to servers, 

some must be done on the 
mobile device
– Similar compute needs and 

massive growth in both 
spaces

How must CPU 
architecture change to 
d l ith th t d ?
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Serial ComputationSerial Computation

Transistors
(thousands)

35 Years of Microprocessor Trend Data
Serial Code

(thousands)

Single-thread
Performance
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i 0

…
Conditional
branches
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Typical Power
(Watts)

i=0
i++

load x(i)
fmul
store

cmp i (16)
bc

Number of
Cores

Loops, branches and 
conditional evaluation

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
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Parallel ComputationParallel Computation
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GPU/CPU Design DifferencesGPU/CPU Design Differences

L t f i t ti littl d t

CPU (Serial compute) GPU (parallel compute)

Lots of instructions little data 

• Out of order exec, Branch 
prediction

Few instructions lots of data

• Single Instruction Multiple Data
• Extensive fine threading capability• Few hardware threads

Weak performance gains 
through density

• Extensive fine-threading capability

Nearly linear performance 
gains with density

Maximize speed with fast 
devices

Maximize density with cool 
devices
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Three Eras of Processor PerformanceThree Eras of Processor Performance

Single-Core 
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Era
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 Desire for Throughput
 20 years of SMP arch
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Heterogeneous Computing with an APU ArchitectureHeterogeneous Computing with an APU Architecture

2010 G2010 G (“ ) f(“ ) f 20112011 (“ ) f(“ ) f

CPU CPU 
CoresCores

~17 GB/sec~17 GB/sec~17 GB/sec~17 GB/sec

2010 IGP2010 IGP--based based (“Danube”)  Platform(“Danube”)  Platform 2011 APU2011 APU--based based (“Llano”)  Platform(“Llano”)  Platform

CoresCores

~~7 GB/sec7 GB/sec

UNBUNB

M
C

M
C

DDR3 DIMMDDR3 DIMM
MemoryMemory

CPU ChipCPU Chip

DDR3 DIMMDDR3 DIMM
MemoryMemory

APU ChipAPU Chip

CPU CPU 
CoresCores

UVDUVD
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GPUGPU UVDUVD

SB FunctionsSB Functions

FCH ChipFCH Chip

Graphics requires memory Graphics requires memory 
BW to bring full capabilities BW to bring full capabilities 

to lifeto life
~27 GB/sec~27 GB/sec

~27 GB/sec~27 GB/sec
PCIe

GPUGPU

OptionalOptional

PCIe®®

Bandwidth pinch points and latency Bandwidth pinch points and latency 
hold back the GPU capabilitieshold back the GPU capabilities

Integration Provides ImprovementIntegration Provides Improvement
 Eliminate power and  latency of extra chip Eliminate power and  latency of extra chip 

GPUGPU

crossingcrossing
 3X 3X bandwidth between GPU and Memory!bandwidth between GPU and Memory!
 Same Same sized GPU is substantially more sized GPU is substantially more effectiveeffective

P ffi i d d h l f b hP ffi i d d h l f b h
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 Power efficient, advanced technology for both Power efficient, advanced technology for both 
CPU and GPUCPU and GPU



The Challenges of Integration
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devicesBig devices devices
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How to Balance the Metal Stack?
Cu Resistivity

2
2.1
2.2
2.3
2.4
2.5

uo
hm

-c
m

)

rm
an

ce With barrier
Without barrier

1.5
1.6
1.7
1.8
1.9
2

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1R
es

is
tiv

ity
 (

P
er

fo
r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Line Width (um)Density

With the 20nm node, even local 
metal will be seeing large RC 
increase  compromises more 
diffi lt

Add metal layers?Add metal layers?
 Thin, dense layers for the GPUThin, dense layers for the GPU

difficult
yy

 Thick, low resistance layers for the CPUThick, low resistance layers for the CPU
 Cost issues?Cost issues?
 Via resistance?Via resistance?

15 VLSI Technology Symposium |  June 2011  |  Public

Via resistance?Via resistance?
Technology improvements in BEOL are requiredTechnology improvements in BEOL are required



R R vsvs C?C?

Given the grim RC prognosis, 
should we be re-shaping either 
the aspect ratio or stack 

M1 M1 M1 – M2

M5 – M6

M5 – M1

composition?
Maybe.  
However, there are times when

M1 – M1 M1 M2

However, there are times when 
RC is important, but there are 
also many times when only C 
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The growth in metal layer countThe growth in metal layer count
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Factors driving growth in Metal LayersFactors driving growth in Metal Layers
I t t i t  f  b i  liInterconnect requirements from basic scaling
–Transistor count N scales as S2 (with fixed die size)
Total interconnect length (in lambda) scales N>1 because of semi-
global and global routes   Therefore  interconnect length (in mm) global and global routes.  Therefore, interconnect length (in mm) 
increases at a rate <1/S

Non-scaling design rules
–In order to achieve tight pitch, more restrictive design rules In order to achieve tight pitch, more restrictive design rules 
are imposed that significantly reduce the routeability of metal 
layers:  
Unidirectional metal, increased overlap requirements, restrictive T2T 

d T2L land T2L rules
Each metal layer is “worth less” in terms of routeability:  need more 
metal layers

Reverse scalingReverse scaling
–Long distance routes require lower RC than can be 
accommodated by scaled metal

–So  move routes to thicker layers  but fewer tracks available  
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–So, move routes to thicker layers, but fewer tracks available, 
so pressure on layer count



Factors driving increase in Metal LayersFactors driving increase in Metal Layers

Electromigration/Power Supply GridElectromigration/Power Supply Grid
–As cross section scales with S2, and current increases as Vdd
drops, so current densities increase dramatically
Higher Via R  Metal resistances significantly degrade Higher Via R, Metal resistances significantly degrade 
Drives improved E-M sophistication, process techniques 
(alloys/barriers), denser power networks
Power Gating and Power Islands may drive the need for multipleo e Gat g a d o e s a ds ay d e t e eed o u t p e
supply grids 
More metal consumed by power supply grid

All of the above can have the effect of increasing the number of 
metal layers
– But it can be a tradeoff of Metal layers vs die size and/or route timeBut it can be a tradeoff of Metal layers vs die size and/or route time
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Device Optimization
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Power Transfers

110.0110.0

100.0

105.0

100.0

105.0

90.0

95.0

90.0

95.0

85.0

Balanced workload

85.0

GPU-centric data 
parallel workload

V l i i i l bliV l i i i l bliVoltage range is critical to enabling Voltage range is critical to enabling 
the efficient power transfers that the efficient power transfers that 
make for compelling APU make for compelling APU 
performanceperformance
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Power Transfers

110.0110.0

100.0

105.0

100.0

105.0

90.0

95.0

90.0

95.0

85.0

CPU-centric serial 
orkload

85.0

Balanced workload
V l i i i l bliV l i i i l bli workloadVoltage range is critical to enabling Voltage range is critical to enabling 

the efficient power transfers that the efficient power transfers that 
make for compelling APU make for compelling APU 
performanceperformance
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Operating Voltage Range
E/op vs V

Operating voltage Operating voltage 
requirements:requirements:
 Low voltage necessary forLow voltage necessary for

2

2.5

E/op vs. V

 Low voltage necessary for Low voltage necessary for 
power efficiencypower efficiency
 High voltage necessary for High voltage necessary for 0.5

1

1.5

g g yg g y
a snappy user experience a snappy user experience 
enabled by turbo modeenabled by turbo mode

0

0.7V 0.8V 0.9V 1.0V 1.1V 1.2V 1.3V
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Power Density Limited  GPU

Operating Voltage Challenges
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must:must:

–– Hold power density Hold power density 
constantconstant

0.700V
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0
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40nm 28nm 20nm 14nm

constantconstant
–– Exploit density gains to add Exploit density gains to add 

compute units compute units 
Juniper FrequencyData40nm GPU Frequency Data

This necessarily drives This necessarily drives 
operating voltage downoperating voltage down

 This would be good for energy This would be good for energy 700MHz
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Juniper Frequency Data
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40nm GPU Frequency Data

efficiency except …efficiency except …
–– Variation impacts are much Variation impacts are much 

greater at low voltagegreater at low voltage 300MHz
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The Operating Voltage Challenge

Many barriers to maintaining both high Many barriers to maintaining both high 
and low voltage as technology scalesand low voltage as technology scales

FD devices should enable FD devices should enable 
maintaining the functional maintaining the functional 
range for a generation or tworange for a generation or twoand low voltage as technology scalesand low voltage as technology scales

 TDDB vs. SCE controlTDDB vs. SCE control
 ULK breakdown vs. denser pitchesULK breakdown vs. denser pitches

V i ti t lV i ti t l

g gg g
Will turbo modes be too Will turbo modes be too 

compromised?compromised?
What’s next?What’s next? Variation controlVariation control What s next?What s next?

95.0

100.0

105.0

110.0

Poly

85.0

90.0

Fin
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Cost issuesCost issues
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1000 R = k1/NA

Lithography evolutionLithography evolution

R  k1/NA
 is saturating

NA is saturating

k1 limit is about 0.25

i-linei-line
g-line 
430nm
g-line 
430nm

100

"1:1"

i-line 
365nm
i-line 

365nmKrF 248nmKrF 248nm
ArF

193 nm
immersion

430nm430nmArF
193 nm

10 NA~1.35 NA< 0.8
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Scaling implicationsScaling implications

R = k1/NA .  
– stuck at 193nm for now, NA at 1.35, and k1 limit at 0.25
–Reducing k1 to <0 3 has very considerable cost:Reducing k1 to <0.3 has very considerable cost: 
–Much OPC and RDR needed to achieve tight pitches

K1=0.36

- Net, a significant erosion of pitch-based scaling entitlement
- Scale factors are proprietary … but block area scaling > pitch scaling^2!

Fundamental pitch limitation for 193nm lithography is ~ 80nm
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Pitch splittingPitch splitting

Decomposing a layer into two effectively 
72nm 144nm 

doubles pitch, resolving k1 issue and 
allowing complex shapes

 Decomposition requires Decomposition requires 
significant CAD effort to 
break the patterns into 
two printable layersp y
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Pitch splittingPitch splitting

Decomposing a layer into two effectively 
72nm 144nm 

doubles pitch, resolving k1 issue and 
allowing complex shapes

 Decomposition requires Decomposition requires 
significant CAD effort to 
break the patterns into 
two printable layersp y

 However, now have within-layer 
overlay issues, and min space can be 
a Vmax issue or a Cap issue

4σ min space ~ 16.5nm (PS @ 72nm) versus ~28nm ( @ 80nm)

a Vmax issue, or a Cap issue
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4σ max space ~ 44.8nm (PS @ 72nm) versus ~41.3nm (D@ 80nm)
 ~Ccap variation: +85% / -30% over nominal for PS @ 72nm

 ~Ccap variation: +25% / -15%  over nominal for SE @ 80nm



Why do we care?Why do we care?

Foundries have settled on a 28nm node with a ~4:3 M1X:Poly pitch ratioFoundries have settled on a 28nm node with a ~4:3 M1X:Poly pitch ratio
–Typical Design rules

assuming 0.7x scaling
Design Rule 28nm Desired 20nm

Contacted Poly Pitch ~113nm ~80nm

20nm node CPP is doable 
–but probably want >80nm for margin and gate oversize capability

Contacted Poly Pitch 113nm 80nm
M1X Pitch ~90nm ~64nm

but probably want >80nm for margin and gate oversize capability
Desired 1X metal scaling to 20nm is below pitch split limit
Can get “true” scaling and pitch split 1X metals

–GPU’s have up to 8 1X metals
–CPU’s have 2-5 1X metals

Choice:  significant cost adder for “true” scaling, or reduced cost 
and reduced scaling
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Other cost considerationsOther cost considerations
MOL:  Conventional contacts at <90nm CPP 
don’t work, and a more complex scheme is 
required, analogous to LI used by Intel at 32nm 
(+2 masks)

 BEOL Options:
 Only scale 1X metals to ~80nm pitch, get reduced scaling but lower cost

 Add metal layers at 80nm pitch to recover scaling; increased cost and 
cycle time

 Use some combination of pitch split and non-pitch split layers to obtain 
greater scaling at higher cost

 Key questions to resolve: 

Additional cost of pitch split layers– Additional cost of pitch split layers

– Additional defectivity of pitch split layers (~64 vs ~80nm pitch)

– Whether or not to pitch split vias
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Relative cost experimentRelative cost experiment
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What about EUV?What about EUV?
At = 13.5nm, EUV should make lithography simple, and eliminate the 

f O C ?need for pitch splitting, as well as most OPC.  Right?
Maybe:

– Very expensive capital equipment
– Complex, expensive reflective masks
– Very low throughput due to illuminator

output >10X below requirementsoutput 10X below requirements
– Very high power requirements 

Th i b l blThese issues may be solvable, 
unlikely by the leading edge of 14nm

EUV

Other forms of advanced lithography such as MEBL look attractive, but are 
even further behind EUV. 
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3D Integration to the Rescue?

DRAM

TIM (Thermal Interface Material)

Heat Sink

DRAMi

Through GPU Die

Analog Die (SB, Power)
Metal Layers

Metal Layers
DRAMMicro-

bumps

Through
Silicon 
Vias

(TSVs) CPU Die
Metal Layers

G U e
Metal Layers

Package Substrate

South 
Bridge
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3D Integration to the Rescue?

 Stacking offers many attractive benefits Stacking offers many attractive benefits
Higher bandwidth to local memory

E bl ll l d i l t di t b i th iEnables parallel and serial compute die to be in their own 
separate optimized technology – interconnect speed vs. 
density, device optimization etc.

Allows IO and southbridge content to remain in older, more 
analog-friendly technology

36 VLSI Technology Symposium |  June 2011  |  Public



3D Integration Challenges
 Economical 3D stacking in high volume manufacturing presents co o ca 3 stac g g o u e a u actu g p ese ts
many challenges

Benefits must exceed the additional costs of TSVs, and yield fallout

Logistics of testing and assembling  die from multiple sources can be 
immense

Countless mechanical and thermal issues to solve in high volume mfgCountless mechanical and thermal issues to solve in high volume mfg

DRAM

Clearly 3D provides 
compelling solutions to 
many problems, but the TIM (Thermal Interface Material)

Heat Sink

DRAM
y

barriers to entry mean 
heavy R&D $$ and 
partnerships required

Through
Silicon 

Vias
(TSVs)

CPU Die
Metal Layers

GPU Die
Metal Layers

Analog Die (SB, Power)
Metal Layers

Metal Layers
DRAMDie to 

Die 
Vias
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SummarySummary

Insatiable demand for high bandwidth computation
–Visual image processing
–Natural user interfacesNatural user interfaces
–Massive data mining for associate searches, recognition

Some of these compute needs can be offloaded to servers, 
some must be done on the mobile devicesome must be done on the mobile device
–Similar compute needs and massive growth in both spaces
–Combined serial and parallel computation architectures are 

key in both spaceskey in both spaces
Huge technology challenges to meeting this opportunity

–Interconnect scaling is hitting a wall that must be overcome
A broad device suite is necessary that operates efficiently at–A broad device suite is necessary that operates efficiently at 
low voltage while enabling high speed for response time

–Cost issues present a very real barrier to further scaling
3D integration offers a promising long term solution
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–3D integration offers a promising long term solution


